
                Journal of Biotechnology Research 

                                 ISSN(e): 2413-3256, ISSN(p): 2413-8878 
                                 Vol.  4, Issue. 12, pp: 89-97, 2018 

                       URL: https://arpgweb.com/journal/journal/16 
                       DOI:  https://doi.org/10.32861/jbr.412.89.97 

 
Academic Research Publishing  

Group 

 

 
 

*Corresponding Author 

89 

Original Research                                                                                                                                                  Open Access 
 

The Synthesis and Regulation of Micronutrients in Rice Grains 
 

Bo Peng
*
 

College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Dongyan Kong 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Yu Peng 
School of Science and Technology, Xinyang University, Xinyang 464000, China 

 

Cheelo Dimuna 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Lulu He 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Qingqing Xin 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Yue Jiang 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Yanfang Sun 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 
 

Ruihua Pang 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Xiaohua Song 
Xinyang Academy of Agricultural Sciences, Xinyang 464000, China 

 

Huilong Li 
Xinyang Academy of Agricultural Sciences, Xinyang 464000, China 

 

Juan Peng 
Xinyang Station of Plant Projection and Inspection, Xinyang 464000, China 

 

Ziyue Liu 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

Yuchen Liu 
College of International Education, Xinyang Normal University, Xinyang 464000, China 

 

Shizhi Song 
College of International Education, Xinyang Normal University, Xinyang 464000, China 

 

Hongyu Yuan 
College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal 

University, Xinyang 464000, China 

 

 



Journal of Biotechnology Research 

 

 

90 

Abstract 
Amino acids, vitamins and lipids are the important micronutrients in rice grains. Their synthesis and regulation have 

important effects on the normal growth and development in rice seeds. This review has mainly summarized the new 

advances in the synthesis and regulation of amino acids, vitamins and lipids in rice grains. Simultaneously, the 

challenges of the synthesis and accumulation of the micronutrients in rice grains were also discussed. This review 

provides important information for genetic improvement of grain quality in rice and, potentially, other staple cereals. 
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1. Introduction 
Rice (Oryza sativa L.) is one of the most important food crops providing about 25% of the energy demand for 

more than 3 billion people in the world. Therefore, rice is an extremely important source of energy and nutrients for 

human beings [1]; [2]; [3]. In the past few decades, rice yield has steadily increased and reached a higher level. 

However, the overall quality of rice grain is not optimistic in the market [4]. The quality traits of rice grain are quite 

complicated, and it is generally considered that rice grain quality includes the grain appearance and milling, eating, 

cooking and nutritional qualities. Simultaneously, rice grain quality directly affects the market price of rice 

in the world which in turn is closely related to human nutrition and health [5]. With the continuous increase of global 

population and the gradual improvement of the quality of life, the demand for high quality rice will continue to grow 

strongly in the future [6]; [7].  

The main nutrients in rice grain are starch and storage proteins.These two account for more than 90% of the dry 

weight of rice grains [8]; [9]. The main types of starch available in rice grains include amylose and amylopectin 

whose structure and relative content have important effects on many quality traits of rice. For instance,the relative 

abundance of amylose and amylopectin has a correlated effect on the appearance quality, processing quality, cooking 

quality, nutritional quality and eating quality of rice grains [10]. Storage protein content and amino acid content and 

their relative equilibrium are the most important factors determining the grain nutritional quality in rice [3]; [11], and 

the storage protein content will also affect its eating quality, processing quality and appearance quality in rice grain 

[12]. Storage protein provides about 15% of human protein sources and it could be classified into glutenin, prolamin, 

globulin and albumin according to the different separation and extraction methods [8]. The micronutrients in rice 

grain mainly include amino acids, vitamins and lipids, and their composition and relative content in rice grains have 

a certain influence on the rice grain qualities, such as eating quality, appearance quality, nutritional quality, cooking 

quality and processing quality [13]; [14]. Therefore, the composition and relative content of nutrients in rice grain 

are closely related to human health. 

In the past decade, important progress has been made in the genetic improvement  of nutrients in rice grain [6]; 

[15]; [16]; [17]. A large number of genes have been isolated and cloned to regulate the synthesis and degradation of 

nutrients such as amino acids, lipids and vitamins in rice [15]; [18]; [19]. The nutrients in rice grain are closely 

related to the quality traits of rice. Therefore, to elucidate the synthesis, regulatory network and genetic basis of 

amino acids, lipids and vitamins in rice has great values both on theory and practice for genetic improvement of 

grain quality in the future. Here, we focus on the recent new advances in the synthesis and regulation of 

micronutrients such as amino acids, lipids and vitamins in rice grains. Furthermore, the strategies for genetic 

improvement of the nutrients in rice are also discussed and this will provide an important reference for the genetic 

improvement of the grain quality of crops and the cultivation of new varieties. 

 

2. The Synthesis and Regulation of Amino Acids in Rice Grains 
Amino acids play a very important role in plant growth and metabolism  [20]. The contents of lysine and 

tryptophan in grains are low, and they are the first and second restricted essential amino acids in rice respectively. 

The content of lysine is also a relatively low essential amino acid in other main grain crops (such as corn, wheat, 

etc.), thus lysine is considered as the first limiting amino acid in cereal crops [21]; Ufaz and Galili [22]. In order to 

meet the needs of human nutrition balance, it is necessary to improve the protein content and the relative content of 

amino acids in rice grain. Through the aspartic acid metabolism pathway, not only lysine but also the other three 

essential amino acids, methionine, threonine and isoleucine could be synthesized in rice [23]. Aspartic kinase (AK), 

dihydropyridine dicarboxylic acid synthase (DHDPS) and lysine ketoglutarate reductase/yeast aminoate 

dehydrogenase (LKR/SDH) are the three key enzymes in aspartic acid metabolism pathway [24]. Among them, AK 

and DHDPS play a feedback inhibitory role in aspartic acid metabolism pathway. AK catalyzes the first step of 

lysine synthesis pathway, while DHDPS catalyzes the first step of dihydropyridine dicarboxylic acid branching. At 

the same time, lysine and threonine can feedback the inhibition of AK while lysine is the regulatory inhibitory factor 

of DHDPS Vidal, et al. [25]. When the content of lysine in grains is high, the activity of LKR/SDH will increase 

correspondingly, which will promote the degradation process of lysine in vivo and lead to the low content of lysine 

in grains [26]; [27]. A large number of studies based on aspartic acid metabolism pathway have indicated that if the 

expression of AK and DHDPS genes was promoted or the expression of LKR/SDH genes and 13-kDa prolamine 

genes was inhibited, the lysine content in rice plants was significantly increased [28]; [29]. If the lysine-rich 

exogenous protein was specifically expressed in rice grains or the RLRH1 and RLRH2 genes were overexpressed, the 

lysine content in rice grains could also be significantly increased [30]; [31]. Therefore, the specific quantitative 

expression of the key genes in the lysine metabolism pathway can greatly enhance the lysine content in rice grains. 

https://creativecommons.org/licenses/by/4.0/
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Tryptophan and phenylalanine, are essential amino acids which can not be synthesized by the human and animal 

bodies.They play an important role in the growth, development and metabolism of both human and animal [32]. 

Tryptophan and phenylalanine belong to aromatic amino acids which are the precursors of various secondary 

metabolites in rice. They are closely related to the growth and development of rice and even the rice grain quality 

[33]. Therefore, increasing the content of tryptophan and phenylalanine in rice grain is of great significance to the 

improvement of nutritional quality of rice. Cuurently, there are many studies on increasing the content of lysine and 

methionine in rice grain while those aiming at trying to increase the content of tryptophan and phenylalanine in rice 

are relatively less [34].  

Aromatic amino acids belong to the metabolic pathway of shikimic acid in plants, bacteria and fungi (Fig. 1), 

and they share a common precursor, branching acid. Various alpha-subunit-related genes of feedback-insensitive o-

aminobenzoic acid synthase (AS) have been used in the genetic improvement of tryptophan in crops [33]; [35]. In 

order to improve the content of tryptophan, a large number of corresponding mutants had been used, but it was 

difficult to find the mutants with significant changes in phenylalanine content [36]; [37]. The dehydratase ADT/PDT 

encoded by Mtr 1 could catalyze the last step of phenylalanine biosynthesis in the overexpressing of transgenic 

plants [38], and the contents of tryptophan and phenylalanine increased significantly, suggesting that o-

aminobenzoic acid synthetase and ADT/PDT dehydratase play a key role in regulating the metabolism of tryptophan 

and phenylalanine in rice grains. 

 
Figure-1. Pathway showing aromatic amino acids biosynthesis 

 
AS, anthranilate synthase; Trp, tryptophan 

 

Cysteine and methionine are important amino acids that constitute proteins and the synthesis of the former 

(cysteine) can enhance the antioxidant stress ability in plants. Most other sulfur metabolites are directly or indirectly 

derived from cysteine, thus cysteine is at the center of sulfur metabolism in plants [39]; [40]. Serine acyltransferase 

and 3-phosphoglycerate dehydrogenase are two rate-limiting enzymes in the process of cysteine biosynthesis. 

Hydrogen sulfide and O-acetylserine (OAS) finally react with cysteine synthase (OAS-TL) to form cysteine [40]. 

Two rate-limiting enzymes (serine acyltransferase and glycerol 3-phosphate dehydrogenase) strictly regulate the 

catalytic reaction of cysteine synthesis resulting in the low content of cysteine. The synthesis of cysteine synthase 

complex (CSC), using cysteine synthase (OAS-TL) and serine acetyltransferase (SAT) will be more effective in 

regulating the process of cysteine biosynthesis [41]. Methionine is an essential amino acid that humans and animals 

can’t synthesize themselves. Methionine as one of the essential protein source provides active methyl groups for the 

body, and it can also be converted into cysteine in vivo [42]; [43];. The lack of methionine can cause a variety of 

hazards to humans and livestock, and long-term consumption of foods with low methionine content may lead to 

many diseases. For example, methionine deficiency in livestock’s diet will lead to the decrease of wool in sheep, 

milk production and meat quality in cows. The absence of methionine human diet will affect the absorption and 

utilization of other related amino acids by the body [44]. Therefore, increasing the content of methionine has been 

one of the important goals pursued by plant geneticists and breeders [33]. The expression of serine acetyltransferase 

gene was driven by a promoter with ubiquitin, which increased methionine and cysteine in rice by 1.4 times and 2.4 

times respectively [45]. Simultaneously, the contents of leucine and valine also increased significantly, indicating 

that methionine could be transformed into isoleucine in rice. Therefore, the use of genetic engineering strategy can 

significantly improve the content of essential amino acids in rice grain, and then improve the nutritional quality of 

rice. 

 

3. The Synthesis and Regulation of Lipid in Rice Grains 
Lipid, including fat and phospholipids, is a very important nutrient in rice grains. It is mainly distributed in the 

aleurone layer outside the embryo and endosperm of rice seeds where a complex of lipids and amylose in rice grains 

form Xu, et al. [46]; Goufo, et al. [47]. At present, many QTLs have been located in rice genome and are closely 

related to lipids in their grains. However, the isolation and cloning of QTL related genes are rare Shao and Bao [48]. 

Fatty acid oxidase (LOX) is an important factor leading to the decline of rice nutritional quality, because it can 
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catalyze the oxidation of lipids [23]. Both LOX-1, LOX-2, LOX-3 and r9-LOX-1 in rice genome encode fatty acid 

oxidase [49]; [50]. It was found that LOX-2, LOX-3 or r9-LOX-1 could inhibit the degradation of fatty acids. The 

degradation of β-carotene in golden rice could be effectively reduced by decreasing the expression of LOX-3 or r9-

LOX-1. 

Very long chain polyunsaturated fatty acid (VLCPUFAs) and long chain polyunsaturated fatty acid (LCPUFA) 

are essential regulatory substances for the synthesis and transport of cholesterol and eicosanoid [51]. They are the 

main components of nerve cells (such as the brain and retina) [52]; which in turn affect the development and health 

of the human body. Ultra long chain polyunsaturated fatty acids can be synthesized through different pathways (e.g. 

ω -6 metabolic pathway or ω-3 metabolic pathway) [53]. Therefore, proteins or enzymes encoded by many genes 

can improve the level of ultra long chain polyunsaturated fatty acids such as FAD3, D5 prolongase gene, ω-3 fatty 

acid desaturase gene, 
Δ
8-desaturase gene and 

Δ
5-desaturase gene [54]; [55]; [56]; [57]. FAD3 protein can catalyze 

the synthesis of α-linolenic acid in rice grains, and then it can be used to increase the content of α-linolenic acid in 

rice. α-linolenic acid is an important precursor of long-chain ω3-unsaturated fatty acids, and its content in rice grain 

is relatively low. If the FAD3 gene is over-expressed, the content of α-linolenic acid in rice grains can be greatly 

increased [58]. Although three FAD3 genes have been cloned in rice, it is unclear how these genes play a role in 

increasing the concentration of α-linolenic acid in rice grains. 

Oil protein is abundant in the oil body of plant seeds and can be used to regulate the content of fat in seeds. The 

over-expression of soybean oil body protein gene was driven by rice endosperm-specific promoter, the fat content in 

transgenic rice grains increased by more than 36%, however, the total triglyceride fatty acid content did not change 

significantly [59]. Rice oil contains a large number of antioxidant substances such as oryzanol, lecithin, tocopherol 

and fertility trienol, which are beneficial to human health Choi, et al. [60]. The expression of GmFAD3-1 and 

OsFAD3 genes was driven by rice embryo-specific promoter REG, which resulted in a significant increase in α-

linolenic acid content in rice embryos and aleurone layers. The increased α-linolenic acid is located in the sn-2 

position of triglyceride and is easily digested and absorbed by human body Yin, et al. [61]. Previous studies have 

shown that OsLTP36 encoded a lipid transporter gene in rice, and if OsLTP36 gene was down regulated, it would 

seriously affect the development of rice seeds, and could significantly reduce the lipid content in rice grains [62]; 

[63]. The FAD3 gene of Brassica napus was specifically expressed in rice, which could significantly increase the 

content of C18: 3 fatty acids and improve the nutritional quality of rice [58]. At present, although important progress 

has been made in the study of lipid metabolism and some genes related to lipid metabolism in rice have also been 

isolated and cloned, how to regulate lipid metabolism pathway in rice grains remains to be further studied. 

 

4. The Synthesis and Regulation of Vitamin in Rice Grains 
The low levels of vitamin A in the endosperm of rice grains cause more than 250 million people in the world 

who rely on rice as their staple food to experience varying levels of vitamin A deficiency, which could lead to 

immune system-related diseases, or even permanent blindness [64]. Carotenoids, mainly beta-carotenoids are easily 

converted into the precursors to synthesize vitamin A in humans [65]. At present, genes related to the pathway of 

carotenoid biosynthesis have been successfully isolated and cloned, and these genes are widely found in bacteria, 

fungi and plants [66]. Although rice can synthesize carotenoids in leaves, some enzymes in the pathway of 

carotenoid synthesis are not expressed in the endosperm of rice. After genetic engineering modification, rice can 

produce a lot of β-carotenoids in endosperm and form yellow "Golden Rice". The first generation of Golden Rice 

contains 1.6 μg carotenoid per gram of dry weight of rice grain, which is equivalent to 100 μg of retinol in 300 g of 

rice per day, and it will greatly alleviate the symptoms of vitamin A deficiency in children [67]; [68]. By using maize 

octahydrolycopene synthase gene (psy) instead of narcissus octahydrolycopene synthase gene in the second 

generation of Golden Rice, the carotenoid content in rice grain could reach 37 μg.g
-1 

[69]. It is feasible to increase 

the β-carotene level in different indica and japonica rice varieties [66]; [70], but there is still a long way to go for the 

commercialization of golden rice. 

The content of thiamine or vitamin B1 in rice grains is relatively low, with only about 18% of the recommended 

daily consumption content, thus vitamin B1 should be supplemented by other ways. Rice aleurone layer and embryo 

(containing more thiamine than endosperm) has been removed in the process of grain polishing, which leads to the 

further decrease of thiamine content in milled rice (mainly endosperm). Therefore, the lack of thiamine may cause 

beriberi in the population with milled rice as the only staple food [71]. In recent years, important progress has been 

made in the biosynthetic pathway of thiamine in plants [72]; [73], the synthesis of thiamine occurs in plastids. Under 

the action of thiamine phosphate (TMP) synthase, the two groups of pyrimidine and thiazole are condensed to form 

TMP, and hydrolysis of TMP into thiamine in cytoplasm and conversion to thiamine pyrophosphate (TPP). TPP 

produced by this pathway can bind to the precursor of thiamine biosynthetic gene and interfere with its gene 

expression, and regulating the ribosomal switch by RNA sequence. Interestingly, TPP ribosomal switch sequence 

located in the 3'-UTR region of THIC gene plays a negative regulatory role in thiamine biosynthesis [74]; [75]. The 

contents of TMP and TPP increased significantly in the leaves of plants with overexpression of THIC gene [76]. 

However, further research is needed to increase the content of thiamine in the endosperm of rice grains.  

Folic acid, also known as vitamin B9 plays an important role in human growth and development. Lack of folic 

acid in diet can lead to many diseases [77]. Many genes have been found to be involved in the synthesis and 

metabolism of folic acid in plants such as GTP cyclase gene (GTPCHI), aminodeoxysynthase gene (ADC), 

hydroxymethyl dihydropurine gene (HMDHP), pyrophosphokinase gene (HPPK) and dihydrocharidase synthase 

gene (DHP) etc [78]; [79]. The over-expression of ADCS gene will increase the content of benzoic acid in plants, but 

the increase of benzoic acid will seriously inhibit the biosynthesis of folic acid, and ultimately lead to the decrease of 



Journal of Biotechnology Research 

 

 

93 

folic acid content [80]. There was no significant change in folic acid content in transgenic plants with the 

overexpression of GTPCHI gene, but it should increase the folic acid content in transgenic plants to 50-100 times 

than the original level when GTPCHI gene and ADCS gene were overexpressed at the same time [81]. Using the 

promoter from maize driven barley gene HPPK/DHPS to express in rice, it was found that the content of folic acid in 

transgenic rice seeds reached about 1.5 times of the original level [77]. Therefore, through the strategy of metabolic 

engineering, using the genes related to folic acid biosynthesis pathway in close related species of rice, it can also 

increase the content of folic acid in rice grains.  

Vitamin E is a compound that includes tocopherol and reproductive trienol family members in eight forms of 

fat-soluble antioxidants. As an important part of human defense, vitamin E provides anti-oxidative damage 

protection, thus reducing the occurrence of various diseases. The overexpression of hydroxyl pyruvate dioxygenase 

gene (HPPD) from Arabidopsis thaliana has no obvious effect on the content of tocopherol, but it can produce more 

reproductive tocotrienols. Finally, the activity of vitamin E in rice grains increased significantly [82]. In rice 

genome, at least 7 genes, such as MT1/2, OsHGGT, OsMPBQ, OsHPPD, OsTC, OsHPT and OsTMT, have been 

found to be involved in the synthesis of vitamin E in rice seeds [83]; [84]. The expression level of OsTMT gene and 

its alleles was closely related to the content of alpha-tocopherol in rice grains [65]. Overexpression of OsHPT gene 

can also increase the content of vitamin E components [85]. If GE gene mutation occurs, it can enhance the 

expression of genes related to vitamin E synthesis and metabolism, and then increase the content of vitamin E in rice 

grains [83]. Interestingly, over-expression of GmTMT2a resulted in a significant increase in the content of alpha-

tocopherol [86], which provided a new idea for increasing the content of alpha-tocopherol in rice grains.  

Vitamin C, also known as ascorbic acid, is an important water-soluble vitamin with antioxidant, anti-

atherosclerosis, improving immunity and anti-cancer properties. However, its content in rice grains is also very low 

[87]. Humans are unable to synthesize this important vitamin due to the lack of glycosolactone oxidase. Although 

the pathway of vitamin C biosynthesis and its associated genes are relatively clear in plants but there is little known 

about them in monocotyledonous plants especially in rice [33]. If the over-expression of the genes from Arabidopsis 

thaliana involved in vitamin C synthesis and metabolism (such as AtGGP, AtGDH, AtGME, AtGPP, AtGMP and 

AtGalLDH), the content of vitamin C in rice grains could be significantly increased [88]. Mutations in the genes 

related to vitamin C synthesis and metabolism in rice will not only reduce the content of vitamin C in the grains [89], 

but also have an important impact on the stress resistance and the development of the whole plant in rice. Therefore, 

in order to solve the problem of low vitamin content in rice grains, an increase in the vitamin content of rice seeds 

and improved nutritional quality, rice must make full use of its genes. To achieve this, we can also consider the 

introduction of exogenous genes, metabolic engineering, genetic engineering and other modern technical methods. 

 

5. The Challenge and Prospect of Nutrient Improvement in Rice Grains 
The nutrients of rice grains include starch, storage proteins, lipids, amino acids, vitamins and so on are improved 

by genetic engineering or metabolic engineering [90]. To produce the best functional proteins or enzymes driven by 

appropriate promoters of the target gene and promote the synthesis of macronutrients and micronutrients in rice 

grains, the growth and development of plants and other metabolic pathways need not to be affected [91]. At present, 

the biosynthetic pathway and regulation mechanism of some nutrients in rice are still unclear, this in turn limits the 

application of genetic engineering or metabolic engineering for genetic improvement in rice. Nutrients in rice grains 

have been researched extensively and important progress has been made by using the strategies of multi-omics 

(proteomics, metabolomics, transcriptome, etc.). For example, some undesirable allergic proteins improved by 

genetic engineering in rice can be screened by proteomics [92], and multiple metabolites related to abiotic stress 

resistance and nutritional starvation can be accurately quantified and identified in rice [93]; [94]. It is especially 

helpful to promote the accumulation of beneficial nutrients in seeds, which will be of great significance to improve 

human health. 

At present, gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-

MS), capillary electrophoresis mass spectrometry (CE-MS), X-ray fluorescence spectrometry (XRF), energy 

dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM), as well as single cell imaging (SCIM) have developed rapidly in recent years [1]. All of these will provide 

new technical solutions for further research on the synthesis and accumulation of nutrients in rice grains. However, 

genetic improvement in rice grains is still challenging in view of the multiple steps in the process of simultaneous 

action of multiple genes on biosynthetic pathways or the multiple traits of multiple biosynthetic pathways in rice. 

Although many genes related to the synthesis of nutrients in rice grains have been revealed, functional genes are 

often directly or indirectly regulated by other genes [33], and there is a common phenomenon that the genes may 

have multiple effects. Therefore, functional genes that can be widely used ingrain nutrient genetics improvement and 

breeding are relatively rare in rice. In order to promote the synthesis and accumulation of nutrients in rice grains, 

these functional genes often need to develop specific, tissue-specific or inducible promoters to drive their expression. 

In recent decades, genome editing technology based on sequence-specific nucleases (SSNs) has developed 

rapidly, and has become one of the most effective new tools for rice genetic improvement [95]; [96]. Particular 

attention should be given to CRISPR/Cas9 technology, which has many advantages: (1) Editing target genes 

accurately; (2) There is no need for hybridization and backcross, and it is convenient and fast; (3) No need for large 

capital investment; (4) Individuals without selection markers can be obtained [96]; [97]. Therefore, CRISPR/Cas9 

technology has been widely used in rice nutrition biosynthesis and metabolism researches [98]; [99]. Therefore, 

genome editing technology, represented by CRISPR/Cas9 technology will play a more and more important role in 
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the process of grain nutrition genetic improvement and breeding of new varieties in rice. This will eventually greatly 

accelerate the genetic improvement of rice grain quality. 
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