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Abstract 
Lipids correlate with membrane characteristics and functionalities as macromolecular constituentts in all cellular 

processes. Numerous aspects of lipid modulation of protein activity and structure are not completely understood and, 

thus a holistic  systematic investigation activities will be pertinent. Protein-lipid interactions are the resultant impacts 

of membrane proteins on lipid physical states or vice versa. Encompassing research needs to be associated with 

strategies to elucidate whether proteins contain binding sites which are lipid specific, and that the protein-lipid 

complexes are ostensibly long-lived, on the time order necessary for the turnover of a normal enzyme. Biological 

membranes have since been determined as essential ingredients in an expansive array of cellular processes, such as 

photosynthesis, cell defence, signaling transduction, communication and motility. Therefore, they constitute multiple 

targets in both basic and applied research. Protein-lipid interactions are becoming increasingly relevant to the 

morphological characterization of membrane proteins as related to their functionalities. Excepting for simplified 

models, certain protein-lipid interactions specifically constitute remarkable challenges which require optimum 

experimental paradigm and design. 
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1. Introduction 
The surge for understanding protein-lipid interactions has led to interests in the morpholigical characterization 

of the functions and structures of protein and lipids in biosystems processes. Lipids are in correlation with membrane 

characteristics and functions as molecular components in all cellular processes. Several aspects of lipid modulation 

of protein activity and structure are not completely understood, and thus, requires ardent holistic systematic 

investigation activities [1]. It has been demonstrated that proteins localized in rat brain myelin were soluble in 

organic solvents, such as chloroform methanol [2], and the term proteolipid was generated including the frequently 

applied technique for lipid extraction. It was revealed that these contained covalent-bonded fatty acids, and varied 

from plasma lipoproteins. Proteolipids are ubiquitous in nature, and are recognized as proteins having covalent-

bonded lipid components which include isoprenoids, cholesterol, fatty acids and glycosylphosphatidylinositol; as 

well as non-covalently bonded lipid-protein complexes of the sort observed in plasma are referred to as lipoproteins. 

The terms lipoprotein, lipopeptide and proteolipid are applied interchangeably [3]. 

Protein-lipid interactions are the effects of membrane proteins on lipid physical states or vice versa. The relevant 

considerations to comprehending membrane structure and function include: (a) whether intrinsic membrane proteins 

are stringently bound to lipids and, what is the presenting nature of the lipid bilayers adjacent to the protein? (b) 

Whether membrane proteins possess long-range impacts on the dynamics or order of membrane lipids? (c) What are 

the mechanisms whereby lipids affect the protein membrane structure and/or functioning? (d) What are the 

mechanisms by which peripheral membrane proteins bound to the surface layer have interactions with lipids and 

affect their behavior? [4]. The heterogeneity of lipid constituents of biological membranes, and the impact of lipid 

macromolecules are currently being given due cognizance. Characterization on the morphology of membrane 

proteins depict that protein-lipid interactions employing investigative techniques is a daunting task that needs to be 

developed by meanss of newfangled strategy in order to elucidate the mechanism of membrane protein functionality. 

 

2. Bonding Features  
The full and proper functioning of cells are dependent upon biomolecular interactions within and between cells. 

The characterization of these molecular interactions has resulted in the elucidation of the molecular mechanisms of 

cellular control or regulation, biological processes, health and disease. Having complete grasp of the functionalities 

of every molecule of interest in the cell is invariably the objective of modern biology in nature, as they contribute to 

intermolecular interactions, both within a molecular class such as protein-protein-rna [5] or between classes as in 

protein-carbohydrate [6]. Whereas, the tools for these aforementioned classes are almost well established, the area of 

protein-lipid interactions remains relatively unexplored [7]. 

Most of the research has focused on cellular and subcellular structures (especially membranes), blood 

constituents, as well as with model system interactions in aqueous milieu, in tissues and selected food items [4]. 

Lipids interact with proteins via numerous types of bonding. In several select natural lipid-protein complexes, the 

lipoproteins have phospholipids in their lipid constituents. Phospholipid –protein interactions could be associated 

with electrostatic forces in which the binding can emanate when a negatively charged phosphate group and a 

positively charged group attract each other, such as lysyl or guanidyl residue. It could also include a positively 
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charged group in the phospholipid (as per choline) and a negatively charged residue (as per aspartyl). An identical 

binding mode is the production of salt bridges through divalent metals and calcium. It is possible that concurrent and 

cooperative stimulation of electrostatic binding and of salt bridges pertain in bacterial cell walls. The varied types of 

intermolecular forces involved are in decreasing order of magnitude: covalent > electrostatic > hydrogen bond > van 

der Waals. In broader terms, the bonding forces involved in protein-lipid interactions include: (a) van der Waal’s 

which are non-polar bonds and act at short distances; (b) hydrogen bonds are polar bonds which are slightly strong 

forces derived from unsymmetrical sharing of electrons; and (c) charged entities which function as proton acceptors 

or donors and have the potential of attracting oppositely charged groups separated by appreciable distances [8]. 

Several membrane proteins selectively bind specific lipid species which have effect on precise insertions, folding as 

well as full and proper protein functionality [9]. Numerous peripheral membrane proteins are primarily bound to the 

membrane via interactions with the lipid bilayer surface. Certain of these, such as the myelin basic protein and 

spectrum mainly possess structural functions. A few water soluble proteins transiently bind to the lipid bilayer 

surface or within specific parameters. Misfolding processes, commonly exposing protein hydrophobic sites are 

usually linked with lipid membrane binding and concomitant aggregation, for instance, in neuroapoptosis, 

degenerative and neuronal perturbations [10]. 

 

3. Cellular and Dynamic Processes  
Biological membranes have since been determined as essential ingredients in an expansive array of cellular 

processes, such as photosynthesis, cell defence, signaling transduction, communication and motility. Therefore, they 

constitute multiple targets in both basic and applied research [11], in PC and PG. The QA/QA- redox potential 

charges determined by delayed luminescence revealed (a) a differential lipid effect of RC entrenched in micelles or 

vesicles; (b) ma binding interaction alteration between anionic lipids and RC; (c) a particular effect of PC and PG on 

the free energy levels of the primary and secondary quinines ostensibly via the network of intraprotein hydrogen 

bonding; and (d) substantial augmentation of the QA/QA- free energy in PG than in PC both in single-component 

vesicles and detergent micelles. These provide research basis for structural data, implications of the binding 

attributes to RC and likely interactions between lipids and electron transfer components [12, 13]. The interactions 

between peptides and lipids are essentially important in the action of a plethora of membrane-mediated cellular 

processes, such as antimicrobial peptide function, hormone-receptor interactions, ingress via the blood brain barrier 

of drug bioavailability, and viral fusion. Furthermore, a principal objective of current biotechnology is access to 

novel potent pharmaceutical agents having biological action that depends on peptide binding to lipid layers. 

Research must focus on secondary orientation, oligomerization and structure localization within the membrane. 

Simultaneously, it is necessary to elucidate the structural impacts from the peptides on the lipid bilayer because they 

are significant for the interactions. The structural active peptide membrane characterization is an arduous 

investigational task. It is perspicuous that a single experimental method or design can provide an encompassing 

structural characterization of the interaction excepting a multidimensional trajectory is undertaken. Diverse peptides 

empl0y varied interaction mechanisms or combinations of mechanisms; and the interaction mechanisms can change 

with respect to pH, temperature and peptide content of the system. To understand the biological interaction processes 

between peptides and membrane or peptide design with determined functionalities and specificities, it is pertinent to 

configure with molecular resolution the association between the morphological characteristics, such as 

hydrophobicity dissemination or the peptide charge as well as the specific interaction mechanism induced. The 

importance of peptide-membrane interactions at the molecular level is relevant to elucidate and explicate diverse 

biological processes in order to design peptides with specific functionalities as in antibiotic and drug delivery 

regimens. [14-17]. 

Bacterial lipoproteins characteristically present conserved N-terminal lipid-modified cysteine residue providing 

the hydrophilic protection linkage access to bacterial cell membranes. These proteins are relevant in expansive 

bacterial physiological processes, such as virulence; and induce innate immune reactions, as ligands of the 

mammalian Toll-like receptor 2. Recent work has revealed three lapidated lipoprotein structures in monoderm 

bacteria: the lyso, N-acetyl and peptidyl configurations. The bacterial lipoprotein structure is normally constant in 

every bacterium, but in Staphylococcus aureus, they differ between the diacyl and triacyl varieties depending on the 

ambient conditions. Therefore, the lipidation conformation of bacterial lipoproteins, especially in monoderm bacteria 

exhibit greater cpmplexity than was presumed. Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (Pas) 

have relevant functions in plant hormonal and environmental elicitations and diverse cellular dynamics. The 

molecular varieties and redundant functionalities cause PLD-PA to be a relevant signaling complex that regulates 

lipid metabolism, cytoskeleton dynamics, hormonal signaling and vesicle trafficking during plant defence via 

protein-protein and protein-lipid interactions or hormonal signaling [18]. 

 

4. Osmosensing and Osmoregulation 
Osmosensing and osmoregulation constitute critical life mechanisms for all living cells. The bacterial cell wall 

cytoplasm normally comprises 300-400g/l of macromolecules, typically proteins, DNA and RNA which occupy 

portion of the cellular volume [19]. Bacteria do function in the maintenance of their hydration during environmental 

alterations as pertain to their osmotic pressure. As the external osmotic downshift (osmolality reduction) occurs, 

mechanosensitive channels become activated and release low relative molecular mass osmolytes combined with 

aqueous medium from the cytoplasm. With osmotic upshift, osmoregulatory transporters are activated to allow 

ingress of molecules with water. Osmoregulatory channels and transporters detect and elicit reactions to osmotic 
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stress through diverse mechanisms. Mechanosensitive channel, Mscl senses the accelerating tension in the 

membrane and appears to gate as the lateral pressure within the acyl chain region of the lipids decreases to less than 

a threshold level. Transporters OpuA, BetP and ProP become activated as elevated external osmolality results in 

threshold ionic levels greater than circa 0.05M when measured at the proteoliposome lumen. The threshold 

activation levels for the OpuA transporter significantly rely on the anionic lipid fraction that encompasses the 

cytoplasmic protein presentation. The more elevated the anionic lipid fraction, the more increased the threshold ionic 

contents. An identical trajectory is detectable for the BetP transporter. The lipid reliance for the osmotic activation of 

OpuA and BetP translates those osmotic signals may be transmitted to the protein by interactive mechanisms 

associated with charged osmosensor domains and the ionic headgroups of the membrane lipids. The charged C-

terminal BetP and ProP domains are relevant for osmosensing. The C-terminal domain of ProP is associated with 

homodimeric coiled-coil production and interaction with the membrane lipids as well as soluble protein ProQ. The 

ProP activation by luminal, macromolecular solutes at consistent ionic strength suggests that its structure and 

activity also respond to macromolecular crowding. The excluded volume impact could cause restriction of the range 

in excess of which the osmosensing domain is likely to have electrostatic interaction. An adequately simplified view 

posits a theory of dissociative double layer that explicates transporter activation as to how alterations in ion contents 

modulate interactions between charged osmosensor domains and charged protein or lipid surfaces. Significantly, the 

relatively elevated ionic levels wherein osomosensors are activated at various surface charge densities correspond 

with the predicted dependence of critical ion levels on surface charge density. The critical ion levels are 

representative of transactions in Maxwellian ionic presentations where the surface potential measures 25.7mV for 

monovalent ions. The osmosensing mechanism is qualitatively depicted as an “ON/OFF switch” relating to 

thermally relaxed and electrostatically bound conformations of protein [20-26]. 

 

5. Antimicrobial Attributes 
Antimicrobial peptides are naturally strategized longstanding host-defence components in all life domains. They 

constitute part of the innate immune system and fight bacteria, fungi, viruses and carcinogenic cells. Peptides present 

structural and mechanistic variations, but several of them directly act at the cell surface with predilection on lipids or 

membrane bound components, such as cell wall precursors. Most mechanistic research regarding the antimicrobial 

mechanisms of membrane-directed peptides have been invariably related to their interaction with artificial lipid 

systems [27]. Diverse models of mode of action have been posited, however, classical pore producing models, such 

as the barrel-stave, toroidal pore or carpet models make provision for interaction of amphipathic alpha-helical 

peptides with lipid bilayers. These models are not appropriate for smaller or more compact peptides which are 

incapable of spanning the lipid bilayer and produce a pore. Alternative interpretations for pore production are: (a) 

molecular ectroporation, (b) sinking raft, (c) interfacial action, and (d) lipocentric pore generation models, with 

application to all smaller AMPs [28, 29]. Inasmuch as theses studies are amenable for understanding AMP 

interaction with lipid bilayers, the translation of these models into a natural in vivo presentation may be 

cumbersome. Biological membranes present more lipid complexity than can be configured similarly in model 

research. Also, biological systems are extremely dynamic and their membranes differ considerably as regards 

ambient conditions. Lipids of declined or elevated fluidity and membrane curvature are relevant in membrane action. 

Significantly, a biological membrane is not available merely as lipid components but as much as 60 per cent protein; 

a situation that is usually neglected when explicating AMP membrane functionality. There is a paucity of in vitro 

studies concerning AMP function, and are restricted to characterizing their pore-generating attributes. Pore 

production is concentration dependent, and usually sub pore-producing doses are constitutively inhibitory. There are 

minute AMPs which do not influence membrane permeability. Therefore, the inhibitory interactions occurring at the 

membrane interface are not amenable to full and proper interpretations with the presenting pore production models 

[30]. To grasp the in vivo mechanism of AMP action, it is pertinent to visualize biological membranes holistically, 

taking into consideration the membrane arrangement and protein niche. Thus, knowledge and information 

unification of in vivo and in vitro research of model systems may create a sustainable paradigm on the physiological 

resultant impact on the targeted cells on both lipid and protein components of biological membranes. This 

functionality can be correlated with diverse charge dissemination on peptide amino acid sequences [31, 32]. 

RWRWRW-NH2 (MP196) is an amphipathic hexapeptide thattargets bacterial cytoplasmic membrane with 

resultant inhibition or restriction of cellular respiration and cell wall synthesis, with potent action against Gram 

positive bacteria without perspicuous cytotoxicity or haemolysis or haemolysis as revealed in erstwhile studies. 

Thus, MP196 is employed as primary structure to develop increasingly potent antibiotic derivatives. It is suggested 

that MP196 derived directly further decreases haemolysis and may influence to ameliorate acute toxicity. 

Haemolysis assessment is critical in clinical evaluation of future applicable antimicrobial peptides undergirded with 

microscopy-based blood cell morphological analysis [33]. 

The molecular functionality of polyene macrolides with antifugal action, amphotericin B and natamycin 

integrates sterol membrane recognition. Physicochemical and functionality investigations have assisted immensely to 

elucidate and explicate the interactions between amphotericin B and ergosterol and, to a perceptible degree also, with 

cholesterol. Conversely, there is extant paucity of molecular details on interactions between natamycin and sterols. 

At the molecular level, high resolution solid state 13CMAS NMR from natural abundance 13C is an important 

instrument to investigate drug-target interactions within lipid membranes [34]. Evidence of alterations in sterol core 

and chain motion suggests certain magnitude of similarity between the molecular complex generated between 

amphotericin B or natamycin and any of the sterols. Although, amphotericin ostensibly engages cholesterol 

transiently flat on the ring structure without perturbing ring methyls, and to engage the chain terminals. In 
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contrast,its interaction with ergosterol exposes alterations in ring methyl 19 and depicts chain double bond 

engagement. Natamycin has interactions with both sterols engaging stringently the ring A of cholesterol, but 

transiently with other sterol ring, and all ring methyls which are directed to one aspect of the sterol core including 

chain base methyl 21 and the cholesterol chain terminal. Complex formation with ergosterol demonstrates a common 

engagement of sterol ring with numerous contacts, encompassing sterol chain engagement but not ring methyl.  

The most remarkable contrast between amphotericin B and natamycin action is that the larger amphotericin B 

molecule cooperatively engages lipid/sterol mixed membranes, thus influencing the membrane arrangement and 

stabilization; whereas natamycin presents stringent and specifics interactions with both sterols. The contrastingly 

decreased cooperativity of molecular interactions in natamycin–containing membranes provides the latitude for non-

perturbation of membrane morphological characteristics. With respect to the minimal therapeutic natamycin 

requirement or level in contrast to membrane cholesterol, specific interactions have slight impact on the cholesterol 

fraction present. Conversely, reduced ergosterol molarity is critically affected by natamycin, resulting in the 

deregulation of ergosterol-dependent protein action [34]. 

It has been determined that membrane thinning is a fundamental mechanism via which antimicrobial peptides 

can derange cellular membranes. Results suggest that diverse factors influence the resultant alterations in membrane 

thickness, such as bilayer peptide orientation as well as incontrovertible hydrophobic mismatch to bilayer adaptation 

[35]. 

 

6. Biophysical and other Analytical Techniques  
Robust research is associated with strategies to elucidate whether proteins contain binding sites which are lipid 

specific, and that the protein-lipid complexes are ostensibly long-lived, on the time order necessary for the turnover 

of a normal enzyme, that is usually 10-3sec. This is realizable via the application of 2H-NMR, ESR and fluorescent 

methodologies. Two strategies are applicable to determine the relative affinity of lipids to be bound to particular 

membrane proteins. These involve the application of lipid analogues in reconstituted phospholipid vesicles having 

the particular protein. The mobility of spin-labeled phospholipids is restricted when adjacent to membrane proteins, 

resulting in a broadened component in the ESR spectrum. Analysis of the experimental spectrum as the totality of 

the two components depicts an accelerated tumbling species in the aggregated lipid phase with a defined spectrum, 

and a mobility restricted component adjacent to the specific protein. Membrane protein denaturation results in 

extrapolated widening of ESR spin-label spectrum with further undergirding regarding protein-lipid interactions 

[36]. Spin-labeled and brominated lipid derivatives can quench the intrinsic tryptophan fluorescence from membrane 

proteins. The quenching efficiency is dependent on the distance between the lipid derivative and the fluorescent 

tryptophans. Several 2H-NMR studies with deuterated phospholipids show that protein presence is of minimal 

consequence on either the order parameter of the liquid within the bilayer or the dynamics of the lipids as determined 

by relaxation times. The encompassing perspective from NMR experiments include: (a) there exists accelerated 

exchange rate of 107sec-1 between the boundary and free lipids; (b) the order parameter of lipids bound are rarely 

influenced because they are adjacent to proteins; (c) there is an extant negligible retardation in the frequency range, 

109sec-1 of the dynamics of the acyl chain reorientations; and (d) the orientation and dynamics of the polar 

headgroups are not affected to the same substantial magnitude by being adjacent to transmembrane proteins. In 

addition, 13C-NMR spectrum provides information on specific membrane protein-lipid interactions [37]. Results of 

non-labeled optical methods, such as Dual Polarisation Interferometry measuring the birefringence [38] and/or order 

within bilayers have demonstrated peptide and protein interactions impact on bilayer order, with particular emphasis 

on the real time association to bilayer and cortical peptide level, culminating in the penetration and disruption of the 

bilayer order by peptides [39] 

Thorough experimental and computational approaches to detect and analyze protein-lipid interactions are 

needed. There are broadly two main experimental technology categories, such as solution-based and array-based 

methods; while computational methods involve large-scale data, robust analyses, and predictions/dynamic 

simulations derived from innate knowledge and information of experimentally determined interactions [7]. 

Progressive development in these experimental technologies has resulted in sustainably enhanced computational 

analyses and reciprocally, thus promoting the understanding of protein-lipid interactions and their relevance in 

biosystems. 

Eukaryotic cells contain numerous diverse membrane compartments with characteristic dynamics, lipid 

organization and shapes. A vast majority of the fractions of cytoplasmic proteins are involved with these membrane 

compartments. These protein-lipid interactions control or regulate the subcellular niches and actions of peripheral 

membrane proteins to the extent, from cytoskeleton dynamics via membrane trafficking to intracellular signaling 

[40]. In reciprocity, several membrane-associated proteins modulate the shape, lipid composition and dynamics of 

cellular membranes. Elucidating the specific mechanisms of protein-membrane interactions will be of immense 

benefit to explicate their biological functions [30]. A series of fluorometric centrifugation and microscopic assays are 

currently available to study the molecular mechanisms of protein-membrane interactions, and the impact of these 

interactions on the conformation and dynamics equally on protein and lipid bilayers. These arrays specifically 

provide disparate sorts of data with their peculiar limitations. It is imperative to select an assay that corresponds with 

the structural and chemical attributes of the specific protein to provide the sort of information required. Since lipid 

organizations differ markedly between specific cell types, their membrane compartments and both leaflets of each 

membrane, it is pertinent to select the lipid composition of the model membrane so that it has a resemblance to the 

specific native membrane compartment as to provide reliable, significant knowledge and information in protein-lipid 

interactions [18]. 
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7. Discussion  
Protein-lipid interactions are becoming increasingly relevant to the morphological characterization of membrane 

proteins as related to their functionalities. Excepting for simplified models, certain protein-lipid interactions are 

specifically challenging to experimentally highlight. A study employed molecular dynamics simulation for the 

identification of a specific protein-lipid interaction in lactose pernease, a prototypical transmembrane protein model 

[41]. The interactions are able to be correlated with action reliance of the protein to lipid specificity. The tool is not 

complex, and it is expansively amenable to other membrane proteins; and diverse lipid matrices are utilizable [41]. 

The integrated relationship between proteins and lipids triggers several significant cellular processes, such as 

membrane trafficking, signal transduction and cytoskeleton remodeling. Membrane trafficking applies the Golgi 

complex as its hub, and drives the biosynthesis, transport and intracellular dissemination of numerous proteins and 

lipids. Its structure and function are directed via intimate functional relatedness between protein-based and lipid-

based organizations. These machineries are associated with the control of the essential events which effect 

membrane traffic, such as observed in budding, fusion and fission intermediates in the control mechanisms of the 

geometric morphology of the specific Golgi membranes, and ultimately, in signal elicitations which are localized in 

the secretory systems, or that may influence other cellular systems. Lipid-protein interactions depend on the potential 

specific domain lipid recognition. These domains are particularly mediated via the phospholipid headgroups; 

however, certain of these protein domains can specifically interact with the phospholipid acyl chains. It is evident 

that specific proteins and/or protein domains have greater sensitivity to the physical ambient of the membrane layer, 

such as curvature than its chemical arrangement [42]. Membrane lipids are significant in the morphology of 

membrane-embedded transporters [43].  

It is suggested that the cell membrane is a patchwork structure comprising several proteins and lipids which do 

not entirely diffuse but are restricted to dynamic microdomains within the membrane plane. These domains can form 

or be sustained in diverse manners, for instance, ''lipid shells'' encumbering proteins and/or cytoskeletal 

compartmentalization [44]. In addition to micro-environment interactions which co-localize multiple moieties of 

certain functional units, these may be connected to the activity of the unit [44]. Functionally active membrane 

peptides specifically target membranes instead of receptor proteins and conduct their bioplogical roles by 

cooperative functionality [45] Biophysical characterization is necessary to elucidate the entire mechanism of 

peptide-membrane interactions. 

 

8. Conclusion 
Protein-lipid interactions are governed by the first principles of universal biochemical and physicochemical 

ruless which are applicable to every tissue. These protein-lipid interactions are linked with the preservation or 

sustenance of the functionality of integral biosystem proteins. A variety of protein-lipid interactions may prevail at 

the membrane surface , whereby peripheral membrane proteins alter the membrane curvature, or stabilize a 

presenting specific membrane curvature. Further studies are necessary for the determination of essential biochemical 

and biosynthetic pathways in protein-lipid interactions as related to cellular processes, such as photosynthesis, cell 

defence, signaling transduction, communication and motility as they are associated in individual and multiple targets 

in both basic and applied research. 
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