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Abstract 
Many computational methods aim to improve the prediction and recognition of transcription elements in prokaryotes. 
Despite this, the natural features of those elements make their prediction and recognition remain as an open field of 

research. In this paper, we compared the open-access tools BacPP, BPROM, bTSSfinder, CNNPromoter_b, iPro70-

PseZNC, NNPP2, PePPer, and PromPredict. First, we listed the overall functionalities of each tool and the resources 

available on their web pages. Later, we carried out a comparison of prediction results using 206 intergenic regions. When 

evaluating the prediction using intergenic regions containing a single promoter within each, NNPP2 and BacPP obtained 

>90% correct predictions, with NNPP2 obtaining the highest values of match between predicted promoter location and 

location indicated by RegulonDB. Overall, many discrepancies were observed among the results. They may be explained 
by the differences in the methodologies that each tool applies for promoter prediction, not excluding the natural features 

of promoters as a factor as well. In any case, the results highlight the necessity to continue the efforts to improve 

promoter prediction, perhaps combining multiple approaches. Through said efforts, some of the challenges of the 

postgenomic era may be tackled as well. 
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1. Introduction 
Transcription plays a major role in gene expression. It occurs through the interaction between the enzyme RNA 

polymerase (RNAp) and promoters: DNA sequences located ~70 base pairs (bp) upstream from the transcription 

starting site (TSS). This interaction between the RNAp and the promoter sequence is mediated by a small subunit 
protein, known as sigma (σ) factor. Its role in the transcription process is to bind itself to the RNAp and guide the 

now holoenzyme towards a specific promoter sequence [1].  

There are multiple σ factors found within bacteria. In E. coli, for instance, there are seven known σ factors: the 

σ19, σ24, σ28, σ32, σ38, σ54, and the σ70. Each σ factor interacts with specific DNA promoter sequences. As example, 

the housekeeping factor (σ70) is known to regulate most of the genes involved in the vital processes of the bacteria, 

also maintaining the bulk of transcription during its growth phase [2, 3]. It also serves as the model for the canonical 

promoter, composed by two main motifs: one located at a 10 bp distance from the TSS, and another located 35 bp 

distant. Furthermore, the -10 region is composed by a canonical 5’ – TATAAT – 3’ sequence, while the -35 region is 

composed by a 5’ – TTGACA – 3’ [4]. Each σ factor has its own set of features that distinct themselves from each 

other, including structural variations in the motifs (e.g., expected sequence, and degree of conservation), sometimes 

in the expected position of the motifs (such as the σ54, with its motifs located around -12 and -24 bp distant from the 

TSS), among others [1, 3, 4].  
Overall, these distinct features give specificity to the transcription process, and the existence of these multiple σ 

factors allows the bacteria to survive adverse situations – from pH fluctuations to the stress provoked by heat shocks 

[3]. Hence the importance of thoroughly studying them, allowing opportunities to expand our comprehension in 

topics such as: (i) the mechanisms of gene expression regulation; (ii) comprehension of the mechanisms involved in 

diseases; (iii) development of novel drugs in the combat of bacterial infections, to mention a few [4-6]. 

The present post-genomic era and the development of high-throughput sequencing methods is highlighted by the 

genome annotation efforts lagging behind the growing capacity to generate more data [5, 7]. In this context, a still 

relevant challenge is the prediction of promoter sequences and of other genomic structures. The intrinsic features of 

promoter sequences (e.g., short sequences, lack of conservation in its nucleotide content, among others) provide a 

computational challenge to the automated prediction of those elements [8]. As a result, elevated false positive rates 
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(that is, non-promoter DNA sequences incorrectly classified as promoter sequences) is a problem yet to be 

completely solved [9]. Obtaining higher-quality datasets, that is, larger and more reliable (generated through larger 

amounts of experimentally verified sequences), proper understanding of the biological features of those sequences, 
the development of novel methods, and the employment of novel approaches are listed as a few possibilities to solve 

this problem [5, 9, 10].  

In silico approaches are welcomed in that regard. Computational biology and bioinformatics approaches have 

often been employed in efforts to improve the accuracy of promoter prediction tools. Among the tools designed to 

predict and/or classify promoter sequences, a few stand out, such as: BacPP [11], BPROM [12], bTSSfinder [13], 

CNNPromoter_b [10], iPro54-PseKNC [9], iPro70-PseZNC [14], NNPP2 [15], PePPer [16], PromPredict [17].  

Throughout the history of in silico approaches to promoter prediction, several strategies were deployed. Initially, 

the prediction and recognition of these regions was made mostly by sequence alignment. One of the most common 

methods was the Position Weight Matrix (PWM), using (and requiring beforehand, for that matter) the conservation 

of the -35 and -10 elements of known σ70 sequences. Later on, the application of machine learning approaches, such 

as Artificial Neural Networks (ANN) and Support Vector Machines (SVM), contributed to expand the accuracy and 
thus enable a higher efficacy on promoter prediction. Information on curvature and stability of the DNA molecule 

has also played a significant role in enhancing the aforementioned overall efficacy when applied as discriminatory 

features between promoter and non-promoter sequences, going beyond the often-used nucleotide composition [13, 

15, 17]. 

In light of this, the goal of this paper is to describe open-access computational tools focused on gram-negative 

promoter recognition, carrying out a comparison between their results, and assisting in laying out an overall outlook 

on the efforts to tackle the promoter prediction challenges. 

 

2. Methodology  
2.1. Data Description 

We extracted Intergenic sequences from Escherichia coli str. K-12 substr. MG1655 (see supplemental material) 

from IntergenicDB [18]. The K-12 strain choice was made considering that it is one of the considered model 

genomes for in silico approaches, containing well documented and experimentally verified information about its 

genes and their regulation [19]. From the 695 sequences available on IntergenicDB, we selected only those with a 

length equal or higher than 81 nucleotides for comparison and standardization purposes – the 81 nucleotides length 

is the standard sequence size found at RegulonDB [20]. The resulting number of selected sequences was 206. Then, 

we searched the exact location of promoter regions by comparing the 206 sequences with available data from 

RegulonDB v. 9.4 [20]. We also excluded all sequences found in RegulonDB that were not experimentally verified 

nor related to the σ70. In total, 959 σ70-dependent promoter sequences experimentally identified remained. 

 

2.2. Prediction Tools 
Three criteria were used to select the promoter recognition tools: (i) the tools should be Open Access, free of 

charge on its usage, designed for academic purposes, and should also have an associated published paper with it; (ii) 

online availability and (iii) the tools should focus at or at least show promising results when dealing with gram-

negative bacterial genomes. At least eight tools fulfilled these criteria: BacPP [11], BPROM [12], bTSSfinder [13], 

CNNPromoter_b [10], iPro70-PseZNC [14], NNPP2 [15], PePPer [16], e PromPredict [17]. In table 1, each tool is 

presented accordingly to each targeted data, type of input data, performance score, and the related paper. 

 
Table-1. Selected promoter prediction tools, Information regarding input format and performance score were extracted from both websites and 

related references 

Name URL Training 

Dataset 

Performance 

score (informed 

by the authors) 

Reference 

BacPP – Bacterial 

Promoter Prediction 

http://bacpp.bioinfoucs.com/ho

me 

RegulonDB v. 

2009 

83,6% (σ70) de Avila, et al. 

[11] 

bTSSfinder - bacterial 

Transcription Start 

Site finder 

http://www.cbrc.kaust.edu.sa/b

tssfinder/ 

RegulonDB 

v.2013 

89,5% (σ70) Shahmuradov, 

et al. [13] 

BPROM - Predicts 

bacterial promoters  

http://www.softberry.com/berr

y.phtml?topic=bprom&group=

programs&subgroup=gfindb 

Not 

mentioned 

80% (Accuracy) Solovyev and 

Salamov [12]  

CNNPromoter_b - 

Convolutional Neural 

Networks Promoter 

Bacterial 

http://www.softberry.com/berr

y.phtml?topic=cnnpromoter_b

&group=programs&subgroup

=deeplearn 

RegulonDB v. 

2016 

90% (Sensibility) Umarov and 

Solovyev [10]  

iPro70-PseZNC -
Identifying sigma70 

promoters – pseudo-

multi-window Z-curve 

nucleotide 

http://lin-
group.cn/server/iPro70-

PseZNC.html 

RegulonDB v. 
2016 

90% (Accuracy) Lin, et al. [14] 

http://arpgweb.com/?ic=journal&journal=16
http://bacpp.bioinfoucs.com/home
http://bacpp.bioinfoucs.com/home
http://www.cbrc.kaust.edu.sa/btssfinder/
http://www.cbrc.kaust.edu.sa/btssfinder/
http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
http://www.softberry.com/berry.phtml?topic=cnnpromoter_b&group=programs&subgroup=deeplearn
http://www.softberry.com/berry.phtml?topic=cnnpromoter_b&group=programs&subgroup=deeplearn
http://www.softberry.com/berry.phtml?topic=cnnpromoter_b&group=programs&subgroup=deeplearn
http://www.softberry.com/berry.phtml?topic=cnnpromoter_b&group=programs&subgroup=deeplearn
http://lin-group.cn/server/iPro70-PseZNC.html
http://lin-group.cn/server/iPro70-PseZNC.html
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composition 

PePPer - Prediction of 

Prokaryote Promoter 

Elements and 

Regulons 

http://genome2d.molgenrug.nl/

index.php/prokaryote-

promoters 

RegulonDB v. 

2010 

- De Jong, et al. 

[16] 

NNPP2 - Neural 

Network Promoter 

Prediction 

http://www.fruitfly.org/seq_to

ols/promoter.html 

Not 

mentioned 

75% (Accuracy) Reese [15]  

PromPredict – 
Promoter Prediction  

http://nucleix.mbu.iisc.ernet.in
/prompredict/prompredict.html 

RegulonDB v. 
2004 

90% (sensibility) Bansal and 
Kanhere [17] 

 
CNNPromoter_b [10] is able to analyze promoter sequences from both prokaryotes and eukaryotes genomes. 

The classification is made via a co-evolutionary ANN method and a deep learning approach. The tool can predict 

promoter sequences from five different organisms: humans, rats, Arabidopsis thaliana, and both E. coli and Bacillus 

subtilis. The authors found promising results in identifying important motifs in biological sequences using a deep 

learning approach on co-evolutionary ANNs. They highlight a sensibility, specificity, and correlation coefficient of 

90%, 96%, and 84% respectively when predicting E. coli promoters. 

BacPP tool [11] focus is on recognizing and predicting E. coli promoters in accordance to each promoter’s 

associated σ factor. The tool’s approach involves applying extracted rule values of the trained ANN in a separate 

way for each σ factor. Overall, the accuracy of the tool for each σ factor is: 86.9% for σ24, 92.8% for σ28, 91.5% for 

σ32, 89.3% for σ38, 97.0% for σ54 and 83.6% for σ70. 

BTSSfinder [13] tool uses two different elements on its ANN approach: (i) a window of 251 nucleotides, and 

(ii) the classification of a possible TSS at the 201st nucleotide, based on data extracted during their ANN training. 
The approach is based on prediction models of promoters associated with the factors σ70, σ38, σ32, σ28 and σ24 from E. 

coli and the σA, σC, σH, σG e σF factors from cyanobacteria. According to the authors, sensibility for E. coli σ factors 

ranges from 86% to 92%, depending on the σ factor. For cyanobacteria, it varies from 72% to 92%. 

BPROM [12] is a σ70 promoter recognition tool that achieves ~80% of accuracy and specificity values. The tool 

applies a Linear Discriminant Function (LDF) to combine information of functional motifs and oligonucleotide 

composition – features of promoter sequences. To achieve this, the authors used a PWM of five conserved regions of 

a promoter sequence: the sequences located on the -10 and -35 regions regulated by the σ70; sequences with a length 

of 7 nucleotides at the following positions: -60 to -40; -11 to +10, and sequences with a length of 5 nucleotides 

located on -31 to -22. 

iPro70-PseZNC [14] uses the Z-curve method of analysis, where genomic information and characteristics of 

nucleotides (calculated by the frequency of each nucleotide) are mapped on a tridimensional model. The tool is built 
upon a model named “multi-window Z-curve”, representing the tridimensional characteristics of a given promoter 

sequence. Regarding promoter prediction, the authors report an accuracy of ~90%. They applied an SVM and a 

reference data set composed of 741 σ70-related sequences obtained on the RegulonDB [20]. The negative sample was 

composed of 1400 sequences were extracted randomly from coding and intergenic regions of E. coli. 

PePPer [16] is a prediction, mining, and visualization of prokaryotic Transcription Factor Binding Sites (TFBSs) 

tool. It includes an all-in-one method for transcription factors, TFBSs, promoters, and regulons. The promoter 

prediction is based on PWM models and Hidden Markov Models (HMM) of motifs (-35 and -10 regions). The 

authors do not present any information regarding the tool’s performance in its paper. 

NNPP2 [15] uses an ANN model known as Time-Delay Neural Network to incorporate promoter’s elements 

that presents variable gaps between them. It consists mainly of two layers: one to recognize the TATA-box (5’ – 

TATAAT – 3’) and one to recognize the transcription initiator. When tested on the alcohol dehydrogenase gene from 

the Drosophila melanogaster genome, the tool achieved a recognition score of 75%, with a false positive rate on the 
basis of 1/547. According to the authors, the tool was built upon the D. melanogaster example. However, the authors 

mention that the tool can be applied to any sequence from both eukaryote and prokaryote genomes. Burden et al. 

(2005) mentions that the training of the tool [15] was also made using 272 E. coli promoters, although this data was 

not published. Due to this last information, the tool is eligible for our analysis. 

PromPredict [17] is based on the stability difference of coding and promoter regions. The algorithm calculates 

the stability difference (ΔGº) between these regions through the division of a sequence in overlapping windows of 15 

nucleotides. PromPredict [17] is the only tool that we studied that does not use machine learning techniques. 

According to the authors, the tool, when applied to E. coli sequences, shows an overall sensibility of 90%, and 

accuracy of 35%. 

 

2.3. Tool Analysis 
We divided the tool analysis into three segments: tool’s features, available resources, and prediction 

comparison. 

Regarding features, the criteria applied to create an empirical comparison of the tools took into consideration 

four aspects: (i) the content of the help section: if it includes examples and explanations of the tool’s resources; (ii) 

any detailed explanation about how the results should be interpreted; (iii) tool’s capacity of reporting errors on data 

sets or during its execution, informing why the tool was not able to continue its execution, and (iv) the tool’s design 

regarding modern resources, such as having a responsive screen and technologies to meet usage demands.  

http://arpgweb.com/?ic=journal&journal=16
http://genome2d.molgenrug.nl/index.php/prokaryote-promoters
http://genome2d.molgenrug.nl/index.php/prokaryote-promoters
http://genome2d.molgenrug.nl/index.php/prokaryote-promoters
http://www.fruitfly.org/seq_tools/promoter.html
http://www.fruitfly.org/seq_tools/promoter.html
http://nucleix.mbu.iisc.ernet.in/prompredict/prompredict.html
http://nucleix.mbu.iisc.ernet.in/prompredict/prompredict.html
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About the available resources, the analysis was based on the following aspects: (i) availability to perform 

multiple executions per day; (ii) analysis of multiple sequences per execution; (iii) maximum nucleotide size of 

sequences that the tool accepts; (iv) input data upload, and (v) download of results. The intention of such an analysis 
is not to arbitrarily argue towards one tool in detriment of another, but to summarize their features in a technical 

way.  

The analysis of the results was divided into: (i) the accuracy of each tool’s prediction, followed by a comparison 

between each tool’s results (i.e., if a promoter was found by one or more tools); and (ii) validation of the promoter 

sequences from step i by pairing the prediction results with the data extracted from RegulonDB for both location and 

sequence integrity. Figure 1 presents a workflow of the described methodology. 

No time complexity analysis of the tools was considered due to the main focus of them being on classification 

and recognition of promoter sequences, not complete genome scans – where the said analysis would be best suited. 

 

3. Results and Discussion 
Initially, an evaluation of each tool’s features and resources will be presented, followed by an analysis of the 

prediction capacity of each tool. 

 

3.1. Tool’s Features 
The evaluation of the tool’s features is summarized in Table 2. It can be observed that PePPer presents no web 

page with a help section included. With exception of PePPer, assistance material or tutorial with examples can be 

found.  

 

Table-1. The features found on the analyzed tools. 

Tool Tool’s Features Tool’s Resources 

 Usage 

help 

Results 

help 

Support 

for 

errors 

Page 

project 

Searches 

per day 

Amount of 

sequences 

Size of 

sequences 

Input 

by file 

Save 

results 

BacPP ✔ ✔  ✔ ✔ > 10 < 2.000 ✔ ✔ 

BPROM ✔ ✔  ✔  1 > 25.000 ✔  

bTSSfinder  ✔  ✔ ✔ > 10 < 500 ✔ ✔ 

CNNPromot

er_b 
✔ ✔  ✔  > 10 > 25.000 ✔  

iPro70-

PseZNC 
✔  ✔  ✔ > 10 < 500   

NNPP2 ✔    ✔ > 10 > 25.000   

PePPer    ✔ ✔ > 10 > 25.000  ✔ 

PromPredict ✔ ✔   ✔ > 10 < 10.000  ✔ 

 

Regarding the approach of each tool to sequence input, iPro70-PseZNC verifies if the input sequences present a 

valid format, while the other tools execute even if the sequence format is not valid. All the tools allow the input of 

sequences on its web page and, additionally, the tools BPROM, BacPP, bTSSfinder, and CNNPromoter_b offer the 

possibility of uploading files. The tools that offer the possibility of downloading the results are: bTSSfinder, PePPer, 

PromPredict, and BacPP. 

With exception of BPROM and CNNPromoter, unlimited daily access is allowed, some of the requiring the user 

to register. BPROM and CNNPromoter has a limitation of 15 searches per academic domain per day.  

 

3.2. Prediction Analysis 
We opted to exclude BPROM and CNNPromoter_b from this section of the analysis due to the limited 

executions availability (Table 2). In order to adequate our dataset of intergenic regions to the maximum number of 

nucleotides allowed by each tool, we fragmented the dataset accordingly. After the analysis, the intergenic regions 

were reattached. 

Beforehand, RegulonDB data reveals that 70 promoter sequences can be found within the 206 promoter regions. 

The distribution of promoters among the intergenic regions follow: most of the regions contain a single promoter 

(62/70 promoters), one intergenic region contained three promoters, while four regions contained two promoters. 

We fed the six selected tools with the 62 intergenic regions containing a single promoter (Figure 2). BacPP 
predicted 60 promoters (96.77%), while iPro70-PseZNC predicted 14 out of 62 (22.58%). Intermediary values were 

obtained for the remaining tools, with good performance values demonstrated by PromPredict and bTSSfinder, and 

good results by NNPP2.  

Intriguingly, NNPP2 is the only tool that reportedly was not trained using RegulonDB data. Burden et al. (2005) 

only mention a cross-validated dataset of 272 E. coli promoters. This avoids biased results in our analysis using 

RegulonDB data as well, since no clear advantage is given to one or more tools due to similarities between their 

training datasets and our analysis dataset. Yet, NNPP2 achieved ~92% correctly predicted promoters.   

Following the performance analysis, we verified if a given promoter sequence was predicted equally among the 

tools (Table 3). To clarify this, take as example the 60 predicted promoters by BacPP. From them, 47 were also 

http://arpgweb.com/?ic=journal&journal=16
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predicted by bTSSfinder, and only 12 by iPro70-PseZNC. Although the three tools were built on ANN approaches 

and trained using RegulonDB datasets, no uniformity was found in their prediction. It is possible that the different 

dataset versions may explain the discrepancies (Table 3), however that isn’t self-explanatory per se. It would be wise 
to search for further explanations on the data’s own heterogeneity, as well as on the approaches that each tool 

employed. 

iPro70-PseZNC performance values are also intriguing. Although projected to identify σ70-related promoters, its 

prediction fell below the expected when comparing it with tools that were not built upon specific σ  factors datasets. 

Pairing iPro70-PseZNC with BacPP, they share 12 predicted promoters, and zero between iPro70-PseZNC and 

bTSSfinder. 

 
Table-3. Prediction similarity among tools by pairing their promoter prediction results 

 BacPP bTSSfinder iPro70 PseZNC NNPP2 PePPer PromPredict 

BacPP 60 
(100%) 

47/60 
(78%) 

12/60 
(20%) 

56/60 
(93%) 

24/60 
(40%) 

38/60 
(63%) 

bTSSfinder 47/47 

100% 

47  

(100%) 

0 46/47 

(97%) 

24/47 

(51%) 

38/47 

(80%) 

iPro70-PseZNC 12/14 85% 0 14 (100%) 10/14 (70%) 0 0 

NNPP2 56/57 

98% 

46/57 

80% 

10/57 

17% 

57 

(100%) 

24/57 

(42%) 

38/57 

(66%) 

PePPer 24/24 

100% 

24/24 

100% 

0 24/24 

100% 

24 

(100%) 

21/24 

(87.5%) 

PromPredict 38/39 

100/% 

38/39 

97% 

0 38/39 

97% 

21/39 

53% 

39 

(100%) 

 

On the other hand, NNPP2 and BacPP shares 56 predicted promoters (Table 3), even though the training of the 

NNPP2 was not made using RegulonDB data. It also shares 46 promoters with bTSSfinder, ten with iPro70-

PseZNC, 21 with PromPredict, and 24 with PePPer. PromPredict, the only tool that does not built under a machine 

learning-related approach, identified 39 promoters. 

Additionally, a closer look at the region indicated as containing a promoter by each tool is not shared among 

them. For instance, Figure 3 shows one intergenic region that precedes the ampG gene with a size of 459 

nucleotides. For comparison purposes, we used the promoter’s location indicated by RegulonDB: from position 356 

to 437 (highlighted in Figure 3). Each tool identified different fragments of the intergenic region as the promoter 
itself, with significant mismatches from the intended promoter. Surprisingly, iPro70-PseZNC did not identify any 

segment of the 356-437 range as a promoter, even as it is known to be a classic σ70 promoter.  

This comparison was carried out for all the 62 single promoters found within intergenic regions by matching 

predicted sequences’ start and end nucleotide positions given by a tool with the location indicated by RegulonDB 

(Figure 4). 

NNPP2 and BacPP obtained matches between prediction and model RegulonDB data above 70%, with NNPP2 

achieving the highest values (85.96%). On the other hand, the remaining tools were unable to surpass an overall 

match of ~40%. The natural features of promoter sequences can explain these results. They are often perceived as 

short-sized and AT-rich sequences, presenting low degrees of conservation (i.e. the motifs located on the -10 and -35 

regions often are not found to be in accordance with their canonical motif - both in structure and position) [3]. For 

instance, promoter sequences related to the σ54, instead of presenting its motifs located on the -10 and -35, are 

commonly found in the -12 and -24 regions. Therefore, the various features found in promoter sequences poses one 
of the many challenges that promoter prediction and recognition faces [3]. 

Additionally, terminator sequences – which also are relevant elements found within the intergenic regions – are 

similarly AT-rich sequences. Therefore, it is possible that promoter prediction tools may incorrectly classify them as 

promoters, resulting in a false-positive. It has also been related that some promoter prediction tools may accept non-

promoter sequences that carries the classical TATA sequence [21]. Mishra, et al. [8] also mentions novel, not yet 

fully comprehended difficulties arising for promoter prediction efforts, such as overlapping coding regions, short 

intergenic regions between genes, and multiple TSSs. Alongside this, the knowledge of transcription initiation from 

locations other than the TSS (known as pervasive transcription) [22], further expands the list of factors that should 

be taken into account when the objective is to predict promoters. 

 

4. Conclusions 
This paper had the objective of analyzing open-access and online tools focused on the prediction of promoter 

sequences. The majority of the tools present friendly and straightforward web pages, which contribute to a more 
agile execution by its user. However, there is a lack of user support in case of errors, since many tools accept invalid 

characters (which results in poorly formatted or invalid outputs and, sometimes, without delivering any form of 

feedback about the errors). As described in the methodology, 62 intergenic regions were identified as containing at 

least one promoter. However, none of the tools were able to predict this scenario correctly in all the 62 regions. 

Although many of the tools have been built using RegulonDB [20] data for training or validation of results – and 

also being described in the literature as achieving high-performance values (table 1), it was expected that the tools 

would identify at least the 62 regions.  

http://arpgweb.com/?ic=journal&journal=16
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The discrepancies found between the results of each tool stimulates the continuation of researches that focuses 

on enhancing the performance of prediction tools. With such a diversity of results, it would be interesting to use all 

tools together to obtain close to the ideal results, as the location of a promoter sequence should be consensual when 
different prediction tools are employed the task. Moreover, the efforts in promoter prediction are still short on being 

able to efficiently predict promoters of a broad range of microorganisms. An increase in the complexity of data that 

is fed to prediction tools (e.g., multiple features of a promoter sequence, besides nucleotide composition, curvature, 

and stability) could possibly tackle this problem. With this concept in mind, a web service is under development, 

focusing on the integration of regulatory elements tools. Improving promoter prediction tools is beneficial to further 

bridge the gap between genomic data generation and analysis in the postgenomic era. More automation in a process 

that is currently behind data generation may speed our capacity to gather and study meaningful data in the many 

fields that compose biological and medical research. Overall, an expansion in the capacity to discover novel genes 

and comprehend transcriptional mechanisms in an organism may also be seen. Promoter identification is one of the 

most important steps in genome annotation (and one of the most difficult tasks), making every effort towards 

improvements in this field not only a necessity, but a very encouraged endeavor.  
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Figure-1. Simplified workflow of the described methodology 

 
 

Figure-2. Prediction of promoters using 62 intergenic regions–each containing a single promoter 
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Figure-3. Promoter identification within the intergenic region preceding the ampG gene. The Figure shows the RegulonDB promoter (marked in 

gray), and the location that each prediction tool pointed out as a possible promoter. It is also shown the score and the exact position inside the 

intergenic region of each tool 

 
 

Figure-4. Accuracy of sequence location inside intergenic regions. The figure shows the match between the predicted location given by a tool and 

promoter’s original location, indicated by RegulonDB. The results are relative to the number of regions identified by each tool (Figure 2). 
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