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Abstract 
The aim of this paper is to design an efficient numerical method to solve a class of time fractional optimal control 

problems. In this problem formulation, the fractional derivative operator is consid- ered in three cases with both 

singular and non–singular kernels. The necessary conditions are derived for the optimality of these problems and the 

proposed method is evaluated for different choices of derivative operators. Simulation results indicate that the 

suggested technique works well and pro- vides satisfactory results with considerably less computational time than 

the other existing methods. Comparative results also verify that the fractional operator with Mittag–Leffler kernel in 

the Caputo sense improves the performance of the controlled system in terms of the transient response compared to 

the other fractional and integer derivative operators. 
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1. Introduction 
The fractional calculus (FC), as a branch of mathematical analysis, investigates the extension of deriva- tives 

and integrals to non–integer orders [1-3]. Nowadays, the new aspects of the FC are growing fast and its applications 

are found in different areas like chaos synchronization [4], diffusion equation [5], biology [6], control [7] and 

economic [8]. Additionally, the utility of the FC in the optimal control problems (OCPs) has attracted the attention 

of many researchers. Agrawal [9] approximated the solution of the fractional optimal control prob- lems (FOCPs) in 

the Riemann–Liouville sense as a truncated series. Biswas and Sen [10] applied the Grünwald–Letnikov (GL) 

formula to convert the FOCP with Caputo derivative into a system of algebraic equations. Frederico and Torres [11] 

applied a Noether–type theorem for the FOCPs in the Caputo sense. Almeida and Torres [12] approximated the 

FOCP by a new integer one and used a finite dif- ference method to solve it. Sweilam and Al-Mekhlafi [13] 

investigated the FOCPs via an iterative optimal control scheme together with a generalized Euler method. Ejlali and 

Hosseini [14] employed a new framework on the basis of the direct pseudospectral method for solving the FOCPs. 

Jahanshahi and Torres [15] rewrote the FOCP as a classical static optimization problem by using known formulas for 

the fractional derivative (FD) of polynomials, and then, they solved the latter problem by the Ritz method. In 

Bhrawy, et al. [16]; Rabiei, et al. [17], the approximate solutions of the FOCPs were investigated by using the 

Boubaker polynomials and Chebyshev-Legendre operational technique, respec- tively. Lotfi [18] applied a combined 

penalty and variational methods for the OCPs in fractional sense. Zaky [19] employed a Legendre collocation 

method for distributed–order FOCPs. [20] suggested an approximation scheme to deal with the FOCPs by hybrid 

functions. In a recent study by Sahu and Ray [21], a comparison was done between orthonormal wavelets to solve 

the OCPs in fractional sense. More recently, a new iterative algorithm was examined  by Jajarmi, et al. [22] for the 

nonlinear FOCPs with external persistent disturbances. 

The FC includes several definitions of the fractional operators. This aspect can be considered as an advantage 

namely for a given complex dynamic we can choose an adequate fractional operator with or without singularity. In 

addition, for the control of complex systems, there is still a need of introducing new methods and techniques. 

Another important issue which is appeared in the control theory is to develop an appropriate strategy to control the 

state trajectories both in the transient and steady–state responses. Motivated by the above discussion, the aim of this 

paper is to design an efficient numerical technique to solve the FOCPs with both singular and non–singular 

operators. We derive the necessary conditions for the optimality of these problems and evaluate the performance of 

the new method for different cases of FDs. Simulation results verify that the suggested technique works well with 

low computational effort compared to the recent methods available in the literature. In addition, the performance of 

the controlled system in terms of the transient response is improved via the FD with Mittag–Leffler (ML) kernel as 

compared to the other fractional and integer derivative operators. 
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Scientific Review 

 

96 

The rest of this paper is structured as follows. In the next section, we give a brief introduction regard- ing the 

fractional operators. Next, we formulate a FOCP and derive its necessary optimality conditions. In Sect. 4, we 

suggest an efficient iterative method, which solves the state and costate equations forward and backward in time, 

respectively. Our numerical findings are reported in Sect. 5, which indicate the effectiveness of the proposed 

approach. Finally, the paper is finished by some concluding remarks. 

 

2. Notations and Preliminary Results 
Some notations and preliminary results regarding the fractional derivatives and integrals are given in this 

section. Several definitions of the FDs have been presented so far. Following [23], here we define the general forms 

of the left– and right–sided FDs (in the Caputo sense) as follows 

 
respectively, where y : (0,T) →R is a time-dependent function, 0 < ρ < 1 denotes the fractional order of 

derivative, al,ar are constant coefficients for a given parameter ρ and Kl,Kr are nonnegative integrable kernel 

functions. The left– and right–sided fractional integrals (FIs) corresponding the definitions (1)–(2) are respectively 

expressed as 

where 

bl,br,cl,cr are given constant coefficients and Ml,Mr are the kernel functions as before.  

The equations mentioned above include the conventional Caputo, CF and AB–Caputo fractional operators as 

their particular cases; hence, according to the above–mentioned notations, we can state the following definitions for 

these operators, respectively.  

Definition 2.1. [1] For y : (0,T) → AC(0,T) and 0 < ρ < 1, the left– and right–sided Caputo FDs of order ρ are 

respectively described by Eqs. (1) and (2), where al(ρ) = −ar(ρ) = 1 Γ(1−ρ) , Kl(t−ζ,ρ) = (t−ζ)−ρ and Kr(ζ −t,ρ) = 

(ζ −t)−ρ. Also, the corresponding left– and right–sided FIs are respectively given by Eqs. (3) and (4), where bl(ρ) = 

br(ρ) = 0, cl(ρ) = cr(ρ) = 1 Γ(ρ), Ml(t−ζ,ρ) = (t−ζ)ρ−1 and Mr(ζ −t,ρ) = (ζ −t)ρ−1. 

Definition 2.2. [24] For y : (0,T) → H1(0,T) and 0 < ρ < 1, the left– and right–sided CF FDs of order ρ are 

respectively described by Eqs. (1) and (2), where al(ρ) = −ar(ρ) = 1 1−ρ , Kl(t−ζ,ρ) = exp[− ρ 1−ρ (t−ζ)]and 

Kr(ζ−t,ρ) = exp[− ρ 1−ρ (ζ −t)]. Also, the corresponding left– andright–sided FIs are respectively given by Eqs. (3) 

and (4), where bl(ρ) = br(ρ) = 1−ρ, cl(ρ) = cr(ρ) = ρand Ml(t−ζ,ρ) = Mr(ζ −t,ρ) = 1.  

Definition 2.3.[25] For y : (0,T) → H1(0,T) and 0 < ρ < 1, the left– and right–sided AB–Caputo FDs of order ρ 

are respectively described by Eqs. (1) and (2), where al(ρ) = −ar(ρ) = A(ρ) 1−ρ , Kl(t−ζ,ρ) = Eρ[− ρ 1−ρ (t−ζ)ρ], 

Kr(ζ −t,ρ) = Eρ[− ρ 1−ρ (ζ −t)ρ], A(ρ) is thenormalization function such that A(0) = A(1) = 1 and Eρ is the ML 

function. Also, the corresponding left– and right–sided FIs are respectively given by Eqs. (3) and (4), where bl(ρ) = 

br(ρ) = 1−ρ A(ρ), cl(ρ) = cr(ρ) = ρ A(ρ)Γ(ρ), Ml(t−ζ,ρ) = (t−ζ)ρ−1 and Mr(ζ −t,ρ) = (ζ −t)ρ−1.  

For more details on the mathematical characteristics of the fractional derivatives and integrations, we refer the 

interested reader to the studies by Podlubny [1], Losada and Nieto [26] and Abdeljawad and Baleanu [27]. 

 

3. Problem Formulation 
This section is devoted to the FOCP formulation, in which the dynamic system includes the FDs in the form of 

Eq. (1). In the following, we first formulate the problem, and then we derive the necessary conditions for the 

optimality of this problem. 

 

3.1. The Statement of the Problem 
Here, we define the FOCP governed by minimizing the following cost functional 

 
where y(t) = (y1(t),...,yn(t)) is the state trajectory while u(t) = (u1(t),...,um(t)) denotes the control variable. The 

weighting coefficients Q and R within the cost functional (5) are positive semi–definite and positive definite 

matrices, respectively. The expression 0Dρ t y(t) represents the FD operator as defined by Eq. (1). The parameters 

A,B are constant matrices, f : Rn → Rn is a continuously differentiable function such that its gradient is Lipschitz 

continuous over the domain, and y0 ∈ Rn is a specified constant vector. In the problem formulation (5)–(7), the 

objective is to find the control function u∗(t) and the corresponding state trajectory y∗(t) satisfying Eqs. (6)–(7), 

which minimize the quadratic cost functional (5). 
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3.2. Necessary Optimality Conditions 
To derive the necessary optimality conditions corresponding to the FOCP (5)–(7), one can follow the same 

procedure as in Biswas and Sen [10]. Note that, satisfying the fractional integration–by–parts formula is a key point 

for the necessary optimality conditions in fractional sense. The proof of this formula in terms of the Caputo and AB–

Caputo has been given by Podlubny [1] and Abdeljawad and Baleanu [27], respectively. Following the same 

procedure as in Abdeljawad and Baleanu [27], we can show that the integration–by–parts formula is also satisfied in 

the CF sense. However, for the other types of derivative operators in the form of Eqs. (1) and (2), the correctness of 

this formula should be checked and verified. Following the same procedure used by Biswas and Sen [10], the 

optimal control law is obtained from 

 
while p∗(t) is the solution of the following boundary value problem 

 
From the system of equations (9), it is obvious that the state equation in (9) involves the left–sided FD while the 

costate equation includes the right–sided one, simultaneously. This causes some difficulties to find the analytic 

solution of these equations effectively. To solve this problem, we will present an efficient approximation method in 

the next section. 

 

4. Numerical Method 
Applying the FI operator (3) to the both sides of the state equation in (9), the state equation is converted into a 

Volterra integral equation 

 
where φ(y(t),p(t)) := Ay(t)−Cp(t)+f(y(t)). From Eq. (10) at t = tk+1 and in the i–th iteration of the proposed 

algorithm we obtain 

 
where the values of the costate variable have been assumed to be known from previous iteration. Using the 

trapezoidal quadrature rule, we approximate the integration part in (11) as follows  

 
where ˆ φi,k+1(ζ) is a piecewise linear interpolation polynomial computed from 

 
Using Eq. (13) in (12) we derive  

 
 

5. Conclusion Remarks 
In this section, we present an efficient iterative technique to solve the necessary optimality conditions stated in 

Eq. (9). For this purpose, first we divide the interval [0,T] into N equal subintervals with the mesh points tk = kh, 0 ≤ 

k ≤ N, is the time step size and N is an arbitrary positive integer. Let us denote yi(t), pi(t), ui(t) as the numerical 

approximations of y(t), p(t), u(t) in the i–th iteration of the proposed algorithm, respectively. Moreover, we consider 

the notations yi,k, pi,k, ui,k for the approximate values of yi(tk), pi(tk), ui(tk), respectively. Then, we continue with 

the derivation of predictor–corrector method for the state and costate equations in (9) forward and backward in time, 

respectively. Finally, we combine these two approaches for the state and costate equations by employing a forward–

backward sweep iterative algorithm. 
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