
                Scientific Review 

                                 ISSN(e): 2412-2599, ISSN(p): 2413-8835 
                                 Vol.  6, Issue. 4, pp: 28-35, 2020 

                       URL: https://arpgweb.com/journal/journal/10 

                       DOI:  https://doi.org/10.32861/sr.64.28.35 

 
Academic Research Publishing  

Group 

 

 
 

 

28 

Original Research                                                                                                                                                   Open Access 

 

Reinforcement of Bakelite Moulding Powder in Acrylonitrile Butadiene Rubber 

(NBR): In Comparison with Cashew Nut Oil Modified Phenolic Resin 
 

Uthai Thepsuwan 
MTEC, National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park (TSP), 

Phahonyothin Rd., PathumThani 12120, Thailand 

 

Weenusarin Intiya 
MTEC, National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park (TSP), 

Phahonyothin Rd., PathumThani 12120, Thailand 

 

Promsak Sa-Nguanthammarong 
MTEC, National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park (TSP), 

Phahonyothin Rd., PathumThani 12120, Thailand 

 

Pongdhorn Sae-oui 
MTEC, National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park (TSP), 

Phahonyothin Rd., PathumThani 12120, Thailand 

 

Chakrit Sirisinha 
Rubber Technology Research Centre (RTEC), Faculty of Science, Mahidol University, Salaya Campus, Phutthamonthon 

4 Rd., Salaya, Nakhon Pathom 73170, Thailand 

 

Puchong Thaptong (Corresponding Author) 
MTEC, National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park (TSP), 

Phahonyothin Rd., PathumThani 12120, Thailand 

Email: puchongt@mtec.or.th  

Article History 

Received:  March 19, 2020 

Revised: April 11, 2020 

Accepted: April 19, 2020 

Published: April 20, 2020 

 

Copyright © 2020 ARPG 
& Author 
This work is licensed 
under the Creative 
Commons Attribution 
International 

 CC 
BY: Creative Commons 
Attribution License 4.0 

 

Abstract 
The influences of two phenolic resins, that is, cashew nut oil modified phenol-formaldehyde resin (CN-m-PF) and 

Bakelite moulding powder (BMP), on properties of carbon black filled acrylonitrile butadiene rubber (NBR) were 

investigated and compared. Processability, cure characteristics, mechanical properties, thermal ageing resistance, and oil 

resistance of the NBR filled with various contents of phenolic resins (0-60 phr) were determined. The addition of both 
resins leads to a prolonged cure time with a greater value of torque difference. Regardless of the resin type, the 

improvement of compound processability and the enhancement of modulus and hardness of the NBR vulcanisates are 

observed with increasing resin content. However, many mechanical properties such as tensile strength, elongation at 

break and abrasion resistance are deteriorated. Thermal ageing resistance of the NBR vulcanisate is slightly improved in 

the presence of both resins, probably due to the dilution of NBR with the high heat-resistant phenol-formaldehyde resins. 

Results also disclose that all NBR vulcanisates demonstrate excellent oil resistance, regardless of the resin type and 

content. At any given resin content, CN-m-PF gives a better processability, higher stiffness and greater mechanical 

properties than BMP. However, due to its lower cost, BMP can be used to enhance stiffness of NBR vulcanisates without 

the risk of processing problem. 

Keywords: Rubber; Phenolic resin; Reinforcement; Bakelite; Properties. 

 

1. Introduction 
Acrylonitrile butadiene rubber (NBR) is a synthetic rubber widely used in many applications in which high oil 

and abrasion resistances are required. By adjusting the filler content, a variety of hardness levels of NBR 

vulcanisates can be achieved. However, in certain applications where extremely high hardness level (>85 Shore A) is 

essential such as coupling generator for marine vessels, the sole addition of highly reinforcing fillers such as carbon 

black or silica might cause processing difficulty and, thus, the use of reinforcing phenolic resin is recommended. 

Generally, phenolic resin can be divided into two main groups, resol and novolac, depending on the catalyst used 

and the mole ratio of phenol (P) to formaldehyde (F). Resol resin (F>P, produced under basic catalyzed reaction) is 

highly reactive and can be used as a curing agent for unsaturated rubbers providing crosslinks via chroman ring 
reaction. It is widely used to cure butyl rubber in applications where high heat resistance is required such as tire 

curing bladders [1]. Use of resol resin as a curing agent for rubbers has extensively been reported [2-4]. Novolac 

resin (P>F, produced under acidic catalyzed reaction) can be used as tackifier, bonding agent and reinforcing agent. 

In contrast to the novolac tackifiers which have linear structure, the reinforcing novolac resins are more branched 

and offer good compatibility with the highly polar NBR. This type of resin is often modified with tall oil or cashew 

nut shell liquid for improved compatibility with various rubbers and increased scorch safety for the resins pre-

blended with methylene donor such as hexamethylene tetramine (HEXA) or hexamethoxymethylmelamine 
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(HMMM) ]5[ . To function as a reinforcing agent, the novolac resin, when used in combination with methylene 

donor, can undergo self-condensation reaction and form crosslinked structure in the rubber network, the so-called 

interpenetrating network [6]. It is reported that the addition of reinforcing novolac resin improves stiffness, abrasion 
resistance, heat, oil and solvent resistance of the rubber products [5]. So far, the applications of phenolic resins in 

various rubbers have been extensively investigated such as NBR [7, 8], NBR blends [9, 10], ethylene propylene 

diene monomer (EPDM) [11, 12], natural rubber (NR) [13], butyl rubber [14, 15] and styrene butadiene rubber 

(SBR) [16, 17].  

Bakelite is a trade name of phenol-formaldehyde thermoset resin blended with wood flour for cost reduction 

purpose. In most commercial Bakelite moulding powder (BMP), the phenol formaldehyde thermoset resin or its 

modified form acts as a binder. Due to its high mechanical strength, very low water absorption, great electrical 

insulation, high resistance to most chemicals and excellent temperature resistance, BMP is widely used to make 

kitchenware, buttons, toys, lamp holder, including electronic insulating components such as switches, plug and 

socket.  

Although BMP has a wide range of applications in plastic industry, little attention is given to the application of 
BMP in rubber industry. Due to its relatively low cost, the use of BMP as a reinforcing filler for polar rubbers, 

particularly NBR, is of great interest. This work aims to investigate the effect of BMP on properties of CB-filled 

NBR. Various contents of BMP were added and properties of the BMP-filled NBRs were measured and compared 

with those of the NBRs filled with the more expensive counterpart, the cashew nut oil modified phenol-

formaldehyde resin (CN-m-PF).   

 

2. Experimental 
2.1. Materials  

All materials were used as received. Acrylonitrile butadiene rubber (NBR: KRYNAC 3345F with acrylonitrile 

content 33% and 45-ML1+4@100C) was manufactured by Lanxess Deutschland GmbH, Germany. Carbon black 
(CB; N330 with specific surface area of 80 m2/g) was produced by Thai Carbon Black PCL, Thailand. Bakelite 

moulding powder (BMP; PF2A2-131 with approximately 70% wood flour content) was obtained from Zhejiang 

Jiamin Plastic Co., Ltd., China. The cashew nut oil modified phenol-formaldehyde resin (CN-m-PF; SP-6600 with 

HEXA content 7.5%) was purchased from Akrochem Corporation, USA. N-tert-butyl-benzothiazole sulfenamide 

(TBBS), N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD) and 2,2,4-trimethyl-1,2-dihydroquinoline 

(TMQ) were manufactured by Monflex Pte. Ltd., Singapore. Aromatic oil was supplied by PSP Co., Ltd., Thailand. 

Tetramethylthiuram disulfide (TMTD) was produced by Taminco, N.V., Belgium. Stearic acid was obtained from 

IOI Acidchem International Sdn. Bhd., Malaysia. Zinc oxide (ZnO) was produced by Thai-Lysaght Co., Ltd., 

Thailand. Sulfur was supplied by Siam Chemicals Public Co., Ltd., Thailand. The standard reference oil (IRM#903) 

was purchased from Chemical Innovation, Co., Ltd., Thailand. 

 

2.2. Preparation and Testing of the Rubber Compounds  
Rubber compounds were prepared in an internal mixer (Brabender-Plasticorder 350E, Germany) with fill factor 

and rotor speed of 0.75 and 40 rpm, respectively. A 2-step mixing technique was employed. In the first step, NBR 

was mixed with the following ingredients, i.e., 3 phr ZnO (activator); 2 phr stearic acid (activator); 2 phr 6PPD 

(antioxidant); 1.5 phr TMQ (antioxidant); 5 phr aromatic oil (processing aids); 80 phr CB (filler) and various 

contents (0-60 phr) of BMP or CN-m-PF (reinforcing agent), at the initial chamber temperature of 80C for 10 
minutes. The curatives (1.2 phr TBBS; 0.5 phr TMTD and 2 phr sulfur) were added into the compounds in the 

second step at lower mixing chamber temperature (60C) for 2 minutes. After mixing, the compounds were 
immediately sheeted on a two-roll mill (Labtech LRM150, Thailand) and left overnight at room temperature before 

testing.  

Mooney viscosity (MS1+4@100ºC) of the rubber compounds was measured as per ISO 289-1 using a Mooney 
viscometer (TechPro viscTECH+, USA). A small rotor was selected for the test because of the high compound 

viscosity. Cure characteristics were evaluated by a moving die rheometer (MDR; TechPro MD+, USA) at 150C 

using the procedures described in ISO 6502. Rubber vulcanisates were prepared in a compression mould at 150C 
using the tc99 as determined from the MDR unless stated otherwise. Hardness was measured as per ISO 7619-1 

using a Shore D durometer (Bareiss, Germany). Tensile properties were measured using a universal testing machine 

(Instron 3366, USA) according to ISO 37 (die type 1). Abrasion resistance was determined by DIN abrasion tester 

(Zwick, Germany) following ISO 4649. The cylindrical-shaped DIN specimens were prepared in a compression 

mould at 150C using the curing time of tc99 + 6 minutes. Filler dispersion was characterized by scanning electron 
microscope (SEM, Hitachi 3400, Japan). The fracture surface of the tensile specimen was sputter coated with gold 

prior to the examination. Accelerated ageing test was carried out at 100C for 24 hours using an ageing oven 
(Elastocon EB 10, Sweden) in accordance with ISO-188. After ageing, the tensile properties of the specimens were 

determined and compared with those of the unaged specimens. Oil resistance was also evaluated by immersing the 

dumbbell-shaped specimens in IRM#903 oil at room temperature for 72 hours. Weight change and tensile properties 

of the swollen specimens were investigated and compared with the unswollen ones.  

 

3. Results and Discussion 
Fig. 1 represents Mooney viscosity (MS1+4@100C) of the rubber compounds. The addition of CN-m-PF 

noticeably reduced compound viscosity. The results are not beyond expectation because CN-m-PF is a phenol-

http://arpgweb.com/?ic=journal&journal=10


Scientific Review 

 

30 

formaldehyde resin modified with a cashew nut oil which has excellent compatibility with NBR in all proportions, 

and thus, at high temperature (>73C), CN-m-PF melts and plasticizes the rubber compound. The addition of BMP, 
on the other hand, had very little effect on a compound viscosity even at a very high content (60 phr). This might be 

attributed to the combination of the high BMP softening point (105±3C) and the presence of wood flour in BMP.  
The MDR results shown in Fig. 2 and 3 reveal the prolonged cure time (tc99) and the increased torque difference 

(MH-ML) with increasing both CN-m-PF and BMP contents. Since the resins do not crosslink with rubber molecules 
[5], it is thought that the increased cure time and the enhanced torque difference mainly arise from the curing nature 

of the added resins. More time is required to reach complete cure when a greater amount of CN-m-PF or BMP is 

added. In the meantime, this yields a greater level of crosslink density in the rubber products. Obviously, CN-m-PF 

gives a stronger effect on cure characteristics than BMP, i.e., at the same content, the compounds filled with CN-m-

PF has longer cure time with higher torque difference than those filled with BMP. This is understandable because the 

BMP contains relatively large amount of wood flour (70%) and, hence, a lower amount of curable phenol 
formaldehyde resin when compared with the unfilled CN-m-PF resin at the same content.  

The influences of CN-m-PF and BMP on hardness (Shore D) of the vulcanisates are illustrated in Fig. 4. As 

expected, hardness is increased continuously with increasing CN-m-PF and BMP contents, which might be 

attributed to the reinforcement of interpenetrating crosslinked phenol formaldehyde resin. When mixed with rubber, 

the resins are molten and dispersed in a rubber matrix. During the vulcanisation of rubber, the resins react with 

methylene donor (HEXA) and form infusible thermoset networks dispersed in the vulcanized rubber leading to the 

significant increase of hardness [16, 18]. At the same content, CN-m-PF gives higher hardness than BMP which can 
be explained by the higher crosslink density of CN-m-PF as previously mentioned. It can be observed that hardness 

is increased almost linearly with increasing resin content. By performing a linear regression, the relationship 

between hardness (H) and resin content (C) can be given in Equations (1) and (2) for CN-m-PF and BMP, 

respectively. 

H  =  0.285C + 48.1                                                 Equation (1) 

H  =  0.167C + 47.8                                                 Equation (2) 

From the equation, hardness of the rubber vulcanisate can be predicted from the resin content, i.e., an increase of 

1 Shore D is obtained by the addition of 3.5 phr of CN-m-PF or 6.0 phr of BMP. Similar results are obtained for the 

moduli at 20% (M20) and 50% (M50) elongations as shown in Fig. 5 and 6, i.e., moduli tend to increase continuously 

with increasing resin content. A thorough look at the results reveals that, at any given resin content, CN-m-PF gives 

higher hardness and M20 than BMP and the difference seems to be larger at higher resin contents indicating the 
greater ability to enhance hardness and modulus at low strain of CN-m-PF when compared to BMP. The greater 

crosslink density offered by CN-m-PF might be the possible explanation. However, when considering modulus at 

higher strains (say, M50), both CN-m-PF and BMP give similar values of M50 up to 30 phr. Even though further 

increase of resin content caused a difference in M50 between CN-m-PF-filled and BMP-filled vulcanisates, such 

discrepancy was not as large as that found in the low-strain modulus. This may be attributed to the presence of filler 

in BMP which could reinforce the vulcanisates at higher strains, the point where the rubber network in matrix is 

tightly stretched and stress is transferred to the tightly bound rubber located at the filler surfaces.  

Table 1 discloses the effects of resin type and content on tensile strength and elongation at break of the rubber 

vulcanisates both before and after ageing test. Tensile strength and elongation at break do not change significantly 

with the addition of CN-m-PF up to 15 phr. The addition of CN-m-PF above this level results in a noticeable drop of 

both tensile strength and elongation at break. Similar observations have previously been reported by Al-Maamori, et 

al. [7]. They found the continuous decreases of tensile strength and elongation at break of the CB-filled NBR 
vulcanisates with the addition of novolac thermoset resin. However, different results have been reported by Nigam, 

et al. [8], showing the small enhancement of tensile strength of CB-filled NBR vulcanisate when 20 phr of 

reinforcing phenolic resin was added, explained by the improvement of CB dispersion in the presence of resin. 

Chuayjuljit, et al. [13], reported  the improvement of tensile strength in unfilled NR with the addition of novolac 

thermoset resin up to 30 phr and further increase of the resin content also resulted in a significant drop of tensile 

strength. They proposed that the initial improvement of tensile strength was induced by the additional crosslinks 

from the thermoset resin and the co-crosslinks between unsaturated side-chain segments of the resins and the double 

bonds in NR. Unfortunately, the improvement of tensile strength in the presence of phenolic resins is not found 

herein, probably because the CB-filled NBR vulcanisate is highly crosslinked and possesses a good filler dispersion 

even without the addition of the resins (the aggregate size of CB is far below 1 µm as shown in the SEM 

micrographs, Fig. 7(a)). The addition of resins does not improve filler dispersion in this case and the additional 
crosslinks from the thermoset resin might restrict molecular motion of the rubber chains making the rubber become 

stiffer but lower ability for energy dissipation. For the vulcanisates incorporated with BMP, tensile strength and 

elongation at break are continuously decreased with increasing BMP content. Similar explanation is applied.  

At low resin contents (≤30 phr), CN-m-PF gives slightly higher tensile strength and elongation at break than 

BMP. The slightly poorer tensile strength and elongation at break found in the BMP-filled vulcanisate might be the 

consequence from the presence of large-sized particles such as wood flour acting as defects and, thus, causing the 

reductions of both tensile strength and elongation at break as clearly observed in the SEM micrographs, Fig. 7(c). 

However, at high resin contents (45 and 60 phr), the discrepancies of tensile strength and elongation at break 

between CN-m-PF filled and BMP-filled NBR vulcanisates are insignificant.  

Results also reveal the improvement of thermal ageing resistance of the rubber vulcanisates with the addition of 

both CN-m-PF and BMP. Without the resins, tensile strength of the vulcanisate is reduced approximately 10% after 

ageing at 100C for 24 hours. However, in the presence of the resins, tensile strength of the vulcanisate is slightly 
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enhanced (2-10%) after thermal ageing. Similar results are observed for elongation at break, i.e., the elongation at 

break of the vulcanisate without resin is reduced approximately 30% after the thermal ageing, attributed to the post-

curing effect leading to excessive crosslinks between NBR molecular chains. The change of elongation at break is 
reduced in the presence of both resins. Results show that the addition of phenol-formaldehyde resins can improve 

thermal ageing resistance of the vulcanisate, probably due to the dilution of NBR with the high heat-resistant phenol-

formaldehyde resin. The enhanced thermal ageing resistance of the CB-filled NBR from the addition of phenolic 

thermoset resin has also been previously reported [8]. 

Fig. 8 illustrates the effect of resin content on abrasion resistance which is represented in terms of volume loss. 

Unexpectedly, despite the increases of hardness and modulus, abrasion resistance of the vulcanisate is deteriorated 

with increasing resin content, regardless of the resin type, as can be seen from the continuous increase of volume 

loss. The impaired abrasion resistance is thought to arise from the reduced strength of the vulcanisate in the presence 

of the thermoset resins. However, contradictory results have earlier been reported in NR vulcanisate in which the 

addition of phenolic thermoset resin increased abrasion resistance [13]. Consequently, the role of reinforcing 

phenolic resins on abrasion resistance of rubbers is still inconclusive because it might depend on many factors, 
particularly the rubber formulation. At any given resin content, BMP shows slightly inferior abrasion resistance 

compared with CN-m-PF, probably due to the existence of large-sized filler in BMP which has poor interfacial 

interaction with the matrix. 

Oil resistance of the rubber vulcanisates was also characterized by immersing the specimens in oils for 72 hours 

at room temperature before measuring their swelling degree and changes of mechanical properties. Table 2 displays 

the effects of resin type and content on oil resistance of the rubber vulcanisates, represented in terms of property 

changes after oil immersion. It is widely known that NBR is highly polar and, thus, has high resistance to non-polar 

oil. The oil resistance of NBR is further augmented by the addition of reinforcing fillers such as carbon black or 

silica. In this work, NBR was heavily filled with carbon black (80 phr) and densely crosslinked (high sulfur content), 

the NBR samples (both with and without resins) therefore possessed excellent oil resistance, i.e., the swelling degree 

of all samples is negligible (less than 0.2%). It can be observed that the change of tensile strength after oil immersion 

is also insignificant (<10%), confirming an excellent oil resistance of the rubber vulcanisates. Despite the extremely 

low swelling degree, modulus of the rubber vulcanisates tends to increase slightly (10-20%) whereas the elongation 
at break is slightly decreased (<18%) after oil immersion which could be attributed to the more tightened rubber 

network in the swollen specimens. Similar findings have previously been reported [19, 20]. Taking as a whole, the 

densely crosslinked and heavily filled NBR vulcanisates possess an excellent oil resistance and, thus, the effects of 

resin type and content on oil resistance of the NBR vulcanisates are not obvious (the variations found herein are 

within the experimental error limits), even though the addition of crosslinked phenolic resin into the rubber network 

should theoretically increase oil resistance of the rubber vulcanisates due to the existence of additional resin network 

which can resist the oil swelling. In addition, with increasing resin content, the volume fraction of CB in the test 

specimen is reduced whereas the crosslink density of the specimen is increased. The counterbalance of these effects 

might be another reason for the insignificant change of oil resistance in this work.  

 

4. Conclusions 
Both CN-m-PF and BMP can be used to enhance modulus and hardness of the CB-filled NBR vulcanisates in 

the applications where extremely high hardness is essential. Due to its low melting point, CN-m-PF noticeably 

improves processability of the rubber compounds whereas such processability improvement is not obvious with the 
addition of BMP. The addition of CN-m-PF up to 15 phr has no significant effect on tensile strength and elongation 

at break of the rubber vulcanisates. Further increase of CN-m-PF content, however, leads to the deteriorations of 

tensile strength and elongation at break. However, for the BMP-filled system, tensile strength and elongation at 

break are decreased continuously with increasing BMP content. Results also reveal the improvement of ageing 

resistance of the NBR vulcanisates with the addition of both CN-m-PF and BMP. Excellent oil resistance is found in 

all NBR vulcanisates, regardless of the resin type and content. When compared at any given resin content, CN-m-PF 

gives better processability and mechanical properties than BMP. However, for cost reduction purpose, BMP might 

be used to replace the more expensive phenolic resins in the applications where extremely high hardness is preferred. 
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Table-1. Tensile strength and elongation at break of the NBR vulcanisates before and after thermal ageing 

Resin 

type 

Resin 

content 

(phr) 

Tensile strength Elongation at break 

Before ageing 

(MPa) 

After ageing 

(MPa) 

Chang

e (%) 

Before 

ageing (%) 

After ageing 

(%) 

Change 

(%) 

CN-m-PF 0 21.8±1.2 19.5±0.5 -10.7 183±5 127±8 -30.5 

 15 21.8±0.8 22.4±1.4 2.8 191±11 160±15 -16.6 

 30 19.1±0.7 19.4±1.6 1.9 166±8 133±8 -20.2 

 45 17.2±0.2 17.6±0.8 1.9 121±7 93±8 -23.3 

 60 16.5±0.3 18.1±0.5 9.4 92±9 71±3 -23.2 

BMP 0 21.8±1.2 19.5±0.5 -10.7 183±5 127±8 -30.5 

 15 19.0±1.1 19.7±0.5 3.8 156±11 131±6 -15.6 

 30 18.0±0.2 18.8±0.3 4.2 136±9 113±4 -17.1 

 45 17.0±0.4 17.2±1.0 1.3 122±4 97±4 -20.7 

 60 15.3±0.5 16.9±0.4 10.8 99±8 83±6 -16.6 

 
Table-2. Property changes of the NBR vulcanisates after oil immersion 

Resin type Resin content 

(phr) 

Weight 

change (%) 

Changes of mechanical properties (%) 

Tensile strength 20% modulus Elongation at break 

CN-m-PF 0 0.1 1.0 15.8 -5.6 

 15 0.0 4.2 19.5 -8.8 

 30 0.1 4.3 16.7 -9.5 

 45 0.2 9.2 10.8 -3.3 

 60 0.2 2.3 11.2 -7.9 

BMP 0 0.1 1.0 15.8 -2.8 

 15 0.1 0.6 20.2 -10.4 
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 30 0.1 3.7 15.1 -3.8 

 45 0.0 0.7 12.9 -14.1 

 60 0.2 7.8 15.5 -1.5 

  
Fig-1. Effects of resin type and content on Mooney viscosity of the NBR compounds 

 
    

Fig-2. Cure time (tc99) at 150C of the NBR compounds 

 
 

Fig-3. Torque difference (MH-ML) of the NBR compounds 

 
Fig-4. Effects of resin type and content on hardness of the NBR vulcanisates 
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Fig-5. Dependence of 20% modulus of the NBR vulcanisates on resin type and content 

 
 

Fig-6. Dependence of 50% modulus of the NBR vulcanisates on resin type and content 
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Fig-7. SEM micrographs (x20,000) of (a) CB-filled NBR, (b) CB-filled NBR with 60 phr of  CN-m-PF and (c) CB-filled NBR with 60 phr of 

BMP 

 
 

Fig-8. DIN abrasive volume loss of the NBR vulcanisates 
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