Archives

Volume 5 Number 12 December 2019

Effects of Carbonation on the Properties of Concrete


Authors: Ikumapayi C. M. ; Adeniji A. A. ; Obisesan A. A. ; Odeyemi O. ; Ajayi J. A.
Pages: 205-214
DOI: doi.org/10.32861/sr.512.205.214
Abstract
Concrete is one of the reliable, durable, economical and acceptable construction materials among the building and construction stakeholders worldwide. Performance of concrete could be threatened especially reinforced concrete by some processes such as corrosion, sulfate attack among others. Corrosion of reinforcement in reinforced concrete can be induced by carbonation process. Even though carbonation initiates corrosion, it has been gathered that carbonation could still be of immense benefits to building and construction industries if its mechanism of operation is understudied. This research work has therefore investigated the effect of carbonation on some selected mechanical properties of concrete such as compressive strength, flexural strength, water absorption and weight changes. Concrete cubes and beams of M15 grade with 0.5 % water-cement ratio were prepared and subjected to accelerated carbonation. Their compressive strength, flexural strength, water absorption and weight changes were determined in accordance with the relevant standards. The outcomes show that carbonation improves all the mechanical properties investigated. The use of carbonation can be positively explored in reinforced concrete provided there is adequate nominal cover.



Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda


Authors: Mukasa-Tebandeke I. Z. ; Karume I. ; Mutesasira J. ; Wasajja H. Z. ; Nankinga R.
Pages: 198-204
DOI: doi.org/10.32861/sr.512.198.204
Abstract
Cattle dung, cooked food waste, and chicken droppings mixed with coffee husks have been used separately and also as mixtures to form anaerobic digestion slurries in a bid to treat to degrade the organic fractions of these wastes and recycle the bio-fertilizer after recovering biogas. Single and mixed substrate slurries evolved significant quantities of methane within 27days together with reduced mass of soil conditioner. The volume of biogas formed in cogeneration mixtures were higher than for single substrate digestion due to the C/N ratio shifting to near 30:1 as a result of mixing. So degradation of organic pollutants was higher in mixed substrate digestion mixtures. Our study yielded average volumes ranging from 315 to 435+ 5.65.mL/L which was in agreement with what is in literature.  Digestion of cattle dung, cooked waste foods, and droppings of chicken and mixed substrate slurries using sludge inoculums was very effective in degrading solid waste from homes, thus detoxifying it to bio-fertilizers. Although both single and mixed substrate digestion of waste yielded high enough volumes of biogas; digestion of slurry of mixed organic solid waste substrates is better method of waste management.  Digestion of garbage from Kampala should be tested at macro levels at both ambient and mesophilic temperatures. There is need to try out the garbage digestion experiments in the semi-arid towns as well as very cold towns in Uganda.